Machine Learning - Aktueller Treiber des KI-Fortschritts

Ein ausgezeichneter Überblick.

Ein Beitrag aus dem Jahr 1992 ...
NEUronale Netzwerke sind gar nicht so NEU ...
Beitrag von Geoffeey Hinton
Adobe Acrobat Dokument 642.4 KB

World’s most complete Masked Face Recognition Dataset is Free to Download



What’s a Neural Network?


Most introductory texts to Neural Networks brings up brain analogies when describing them. Without delving into brain analogies, I find it easier to simply describe Neural Networks as a mathematical function that maps a given input to a desired output.


Neural Networks consist of the following components


  • An input layer, x
  • An arbitrary amount of hidden layers
  • An output layer, ŷ
  • A set of weights and biases between each layer, W and b
  • A choice of activation function for each hidden layer, σ. In this tutorial, we’ll use a Sigmoid activation function.


The diagram below shows the architecture of a 2-layer Neural Network (note that the input layer is typically excluded when counting the number of layers in a Neural Network)

Deep Fakes - erschreckend und faszinierend zugleich


Lang, lang ist's  her ...