
Tim Teitelbaum
Principled Program

m
ing

Introduction to Coding in Any
Imperative Language

Principled 
Programming



Principled Programming





DateTree Press
Ithaca

Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Professor Emeritus

Department of Computer Science
Cornell University



Principled Programming
Introduction to Coding in Any Imperative Language
Copyright © 2023 by Tim Teitelbaum
All rights reserved.

DateTree Press / Ithaca, New York

First edition, 3/23/2023. Most recent revision, 8/20/2023. 
Please send comments and corrections to 

ISBN: 979-8-9877441-0-9
Library of Congress Control Number: 2023902044

Code is presented in this book for its instructional value. No warranties or representations are made, nor is any 
liability accepted.

Photo Credits
Cover (front), Pascaline, https://en.wikipedia.org/wiki/Pascal%27s_calculator#/media/File:Pascaline-CnAM_823-1-IMG_1506-black.

jpg, CC BY-SA 3.0 FR (by Rama).
Cover (back), Motorola MC68HC000LC8, https://commons.wikimedia.org/wiki/File:Motorola_MC68HC000LC8-2413.jpg, CC 

BY-SA 4.0 (by Raimond Spekking). 
Page 57, Puzzle, https://freesvg.org, CC0 1.0.
Page 57, Turtles, https://en.wikipedia.org/wiki/Turtles_all_the_way_down#/media/File:River_terrapin.jpg, public domain.
Page 58, Mona Lisa, https://en.wikipedia.org/wiki/File:Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg, public 

domain.
Page 82, Sierpiński Triangle, https://en.wikipedia.org/wiki/Sierpi%C5%84ski_triangle#/media/File:Sierpinski_triangle.svg, CC BY-SA 

3.0 (by Beojan Stanislaus).
Page 82, Bracken Fern, https://en.wikipedia.org/wiki/Fern#/media/File:Fern-leaf-oliv.jpg, CC BY-SA 3.0, (by Olegivvit).
Page 88, Notes, https://freesvg.org/, CC0 1.0.
Page 123, Torus, https://commons.wikimedia.org/wiki/File:Simple_torus_with_cycles.svg, CC BY-SA 3.0 (by Yassine Mrabet).
Page 153, Playing Cards, https://upload.wikimedia.org/wikipedia/commons/d/d5/Playing_card_heart_2.svg, and others, CC BY-SA 3.0 

(by Cburnett).
Page 153, Box, https://freesvg.org/, CC0 1.0.
Page 361, Daisies, https://en.wikipedia.org/wiki/Leucanthemum, public domain.
Page 390, USA, https://freesvg.org/, CC0 1.0.

https://en.wikipedia.org/wiki/Pascal%27s_calculator#/media/File:Pascaline-CnAM_823-1-IMG_1506-black.jpg
https://en.wikipedia.org/wiki/Pascal%27s_calculator#/media/File:Pascaline-CnAM_823-1-IMG_1506-black.jpg
https://creativecommons.org/licenses/by-sa/3.0/fr/deed.en
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://freesvg.org
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/Turtles_all_the_way_down#/media/File:River_terrapin.jpg
https://en.wikipedia.org/wiki/File:Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg
https://en.wikipedia.org/wiki/Sierpi%C5%84ski_triangle#/media/File:Sierpinski_triangle.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/Fern#/media/File:Fern-leaf-oliv.jpg
https://creativecommons.org/licenses/by-sa/3.0/
https://freesvg.org/
https://creativecommons.org/publicdomain/zero/1.0/
https://commons.wikimedia.org/wiki/File:Simple_torus_with_cycles.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://upload.wikimedia.org/wikipedia/commons/d/d5/Playing_card_heart_2.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://freesvg.org/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/Leucanthemum
https://freesvg.org/
https://creativecommons.org/publicdomain/zero/1.0/


v

Preface

This book is an introduction to computer programming aimed at the level of a first 
college course. It is also suitable as a monograph for people beyond the introductory 
level who are unfamiliar with its methodological content.

A typical introductory programming textbook begins with the notions of algo-
rithm, program, computer, program execution, memory, input, and output. The rest of 
the book presents a programming language. Each language feature is defined by its 
syntax, i.e., how to punctuate it, and its semantics, i.e., what the feature does during 
program execution. Small programs or program segments illustrate each feature and 
its utility. Because modern programming languages are large, such books are typi-
cally also large. Their organization tends toward completeness; they are broad, e.g., 
cover many features, and detailed, e.g., address many fine points of features. These 
books are intimidating in their length, but not in their depth.

Where in such language-oriented books are students explicitly instructed in how to 
program? Guidance and suggestions are scattered throughout the text, but are usu-
ally subordinate to the main chapter structure, e.g., the assignment statement, the 
if-statement, the output statement, etc. Illustrative examples are critical, but are usu-
ally presented as completed programs. The text typically explains how code works, 
but not how it was derived. Programming, the dynamic and synthetic activity of cre-
ating a program, often gets short shrift, as if you are supposed to learn how to do it 
by osmosis from staring at code samples. You can know a programming language 
thoroughly, but still not know how to program. Confronted with a programming 
problem, you may have no idea where to begin. Or worse, you may head off in the 
wrong direction, and soon find yourself mired in a morass from which the best path 
forward may be to back up and start all over again.

In contrast, this book is a methodology-oriented introduction to computer program-
ming. Its subject is programming principles, not language features. To keep focus and 
avoid distraction, I limit myself to a minimal programming language, one so small 
that it can be said to be universal. Programming skill is measured by the ease with 
which you can turn a problem statement into a working program, not by the num-
ber of language features you know. The methodology presented is not specific to a 
particular language; rather, it applies to programming, in general. 

The notation I use is essentially a small subset of Java, but I hasten to repeat: 
The book is about programming, not programming in Java. Appendix III Language 
Similarities provides mappings between this Java language subset and Python, 
C/C++, and JavaScript. For our purposes, these languages share a common core. 
In elementary physics, one doesn't start learning mechanics by studying one or 
another brand of springs and pulleys; rather, one learns Newton’s Laws and how to 



vi · Preface

apply them in arbitrary situations. Similarly, in this book, I eschew the study of any 
particular brand of programming language, opting instead to focus on fundamental 
laws formulated as rules of program composition.

The approach is distinctive in that it presents content to beginners that is often 
considered advanced. In particular, the following concepts are covered early, and 
are incorporated into the methodology: States described by diagrams or Boolean 
expressions, specifications written in terms of preconditions and postconditions, loop 
invariants, data-structure invariants, loop variants, and programming by stepwise refine-
ment. Notwithstanding the subtlety of these ideas, I aim to retain the introductory 
character of the book—by avoiding formalism, offering intuitive analogies, and pro-
viding elementary explanations. 

Any introduction to programming must deal with disparate student backgrounds. 
Those with significant prior exposure may be easily bored by a treatment that belabors 
what they already know. Such students are well-served by my focus on principles, 
and my deemphasis on programming-language details. Specifically, the programming 
notation I use (up until Chapter 18) is so limited that it is readily summarized, in 
toto, in Chapter 2 Prerequisites. For students with a modicum of background, this 
chapter will be a succinct refresher that firms up prior knowledge, provides standard 
vocabulary, and establishes a common baseline for the rest of the book. Students 
with no background whatsoever can learn the material from the chapter, but may 
wish to supplement it, e.g., with one of the many excellent and free resources on the 
Internet. Instructors may wish to offer a lecture, or a few recitation sections, to bring 
everyone up to speed.

A premise of this book is that much of programming can be reduced to a set of 
rules you can follow in cookbook fashion. The conceit is that programming can 
(almost) be algorithmic. You, the programmer, follow the rules, and out will pop a 
program. And not just any program, but a reasonably good program, at that. You play 
the role of a computer, and follow the programming precepts taught in the book. Your 
input data is a description of the problem for which a solution is desired, and your 
output is a program that solves the problem. The book chapters teach the precepts, 
and illustrate how they are applied. Some take a paragraph to explain; others whole 
chapters. The precepts are introduced and illustrated throughout the book; they are 
also listed in Appendix I as a convenient reference, and as a way to summarize one 
aspect of the book’s contents.

Precepts are written as imperatives, albeit they are couched in equivocating phrases 
such as “seek”, “consider”, “if possible”, “prefer”, etc. to allow for the possibility that 
other (perhaps contradictory) precepts take precedence. Thus, I straddle the gap 
between the fiction that coding can be deterministic (just follow the rules) and the 
fiction that coding is pure design (inexplicable creativity).

One of my themes is the use of programming patterns, short fragments of code 
that perform frequently needed tasks. These patterns arise so often that they are 
best mastered as if they were primitives of the programming language. Patterns are 
introduced and discussed throughout the book. You are encouraged to learn each 
pattern so well that it becomes an atomic notion in your programming vocabulary. 
When, in the course of programming, you see the need to do something for which 
there is an established pattern, you should be able to recognize the pattern’s appli-
cability, and then immediately blast it into your program in one indivisible action. 
In the parlance of cognitive psychology, you should have chunked the pattern, and 
should no longer think of it in terms of its constituent parts. The programming pat-
terns are listed in Appendix II.

The book’s focus is synthesis, not analysis. Thus, no substantial code is presented as 



vii

a fait accompli for interpretation. Rather, the essential content of the book is the step-
wise development of solutions rather than the solutions per se. In cases where more 
than one approach comes to mind, each will be considered, explored, and evaluated. 
A few examples are consequential algorithms. My purpose, however, is instruction 
in programming, not algorithms. As such, although an example may have a well-de-
served reputation and a noteworthy asymptotic running-time complexity, these will 
be incidental to its use in illustrating how you might develop the program yourself.

Code is presented in incremental steps displayed in numbered “movie” frames. 
That way, you are shown a recommended order of development, and not just the 
final program. Each coding “movie” starts with a specification in frame one, and ends 
with the finished product. Some motivating examples are sufficiently substantial to 
warrant chapters of their own. One of these, Running a Maze, serves in multiple 
chapters throughout the book. The final versions of three examples with long piece-
wise developments are presented whole in Appendices IV-VI.

The notions encapsulation, information hiding, and modularity are typically taught 
as an aspect of object-oriented programming, but can be addressed well before 
objects. They are introduced first at the level of statement-level specifications and 
implementations, and are subsequently reiterated using the easily-understood con-
cept of a class’s lexical scope—without reference to objects. In contrast, essentially 
all discussion of objects per se is deferred until the end of the book. This approach 
lets us focus on core programming skills, and effectively defers a plethora of distract-
ing details (such as object instantiation, the class hierarchy, inheritance, polymorphism, 
and dynamic method dispatch) until they are finally introduced in the penultimate 
chapter. A benefit of this delay is that most of the book is truly language indepen-
dent, even if Chapter 18 is not.

Much of the power of a modern programming language comes from libraries. If 
you plan to do any serious programming in a given language, you will surely want to 
master its libraries, and use them rather than “reinventing the wheel”. Despite this 
important fact, for pedagogical purposes I focus on how to program in the base pro-
gramming language, and largely ignore libraries. Although their use is minimized, 
libraries are far from forgotten. In fact, the text foreshadows the need for generic 
collections, and then implements the library class ArrayList as a motivating exam-
ple in Chapter 18 Classes and Objects. Thus, you are led right to the pearly gates of 
libraries, armed with the ability to read and understand library interface specifica-
tions, and to use them to advantage.

I advocate a cautious approach to programming throughout the book, but mis-
takes are inevitable. Debugging code is like trying to find “a needle in a haystack”, 
and the topic is not realistically discussed in the context of short program segments. 
Accordingly, the subject is deferred until the final chapter, where I deliberately intro-
duce bugs into the largest program example of the book, and then discuss how to 
find them.

Language-oriented introductions to programming tend toward being encyclope-
dic tomes; in contrast, I have aimed for a comparatively short, coherent, and digestible 
book. I have aspired to tell a compelling story, knitted together by interesting, non-
trivial examples that are woven throughout—a book that invites cover-to-cover 
reading.

The text is supplemented by Exercises in Appendix VII that give you the oppor-
tunity to test your knowledge. It is one thing to follow along and convince yourself 
(passively) that you understand material; it’s quite another matter to confirm 
(actively) that you have really absorbed the message. Toward that end, you are 
encouraged to do as many exercises as possible. They are organized by chapter, so 



viii · Preface

a reasonable approach is to turn to them after reading each chapter. Some exercises 
are direct applications of ideas presented in the text; others push the envelope on 
related topics, and in effect incorporate new material. 

Many exercises call for writing programs. You are encouraged to not only solve 
these “on paper”, but to test out your solutions on a computer. The BlueJ program-
ming environment is recommended for this purpose [1], but any programming 
environment will do.

Keep in mind that the exercises are your opportunity to apply the book’s 
principles. Don’t just come up with correct solutions; rather, do so with conscious 
attention to the guidance being offered. One way to reinforce the material is to 
articulate explicitly the precept or pattern number you are applying on each cod-
ing step. My hope is that the methodology I’m advocating will eventually be second 
nature to you.

The Internet is an amazing resource that you can and should use to augment the 
text. You can find relevant articles on virtually every concept discussed in the book, 
and you are encouraged to Google for such supplemental material. Most of the 
book's literature citations refer to convenient online web pages rather than original 
primary sources; thus, they are only a click away. Enjoy the background provided by 
Wikipedia, but be sure to stop reading before its details overwhelm and discourage 
you.

The book’s Index is rather thorough, and can be used in a manner akin to flash-
cards, e.g., if you have read the text up through page k, then you should understand 
each term in the index that refers to a page between 1 and k.

My aim in writing this book is your proficiency in programming. I wish you well.

Tim Teitelbaum
Ithaca, New York



ix

Chapter Guide

The book is not long, and is intended to be read end-to-end and in order. Its appar-
ent length is somewhat exaggerated by use of “movie frames” to make coding order 
explicit. This guide is offered for readers or instructors who wish to be selective.

Chapter 1 introduces the book and its pedagogical elements; Chapter 2 defines 
the programming notation used; and Chapters 3-5 present and illustrate the main 
methodological material. Key examples in Chapter 4 are mainly limited to scalar int 
variables, or to the use of abstract operations without their (array) implementations. 
Examples of Chapter 5 process linear sequences of input data on the fly, and there-
fore have no need for arrays (with one exception, the histogramming of values).

3 Specifications and Implementations
4 Stepwise Refinement
5 Online Algorithms

6 Enumeration Patterns
7 Sequential Search
8 Binary Search
9 One-Dimensional Array Rearrangements

10 Median 11 Sorting 12 Collections

Chapter 13 Cellular Automata

14 Knight’s Tour 15 Running a Maze 16 Creative Representations

17 Graphs and Depth-First Search18 Classes and Objects 19 Debugging

1 Introduction
2 Prerequisites

Chapter 6 discusses enumerations of integers and integer pairs; only one small 
example in the chapter uses a 2-D array. Chapters 7 through 9 focus on one-di-
mensional arrays, and illustrate their manipulations. The emphasis remains on the 
methodology of Chapters 3 and 4.

Each of Chapters 10-12 and 14-16 can stand on its own, or be omitted. The sec-
ond half of   is advanced and may be skipped, but follows so naturally from earlier 
material that it has been included as a tasty treat. 

Chapters 14 and 15 solve non-trivial applications from start to finish. The prob-
lem of Running a Maze is addressed in Chapters 1, 4, 15, 17, and 19, and thus those 
chapters make a coherent sequence.

Readers with sufficient background who are eager to get to object-oriented pro-
gramming can make a bee-line directly from Chapter 2 to Chapters 12 and 18, and 
defer or skip all others. When back references are encountered, digress to the exam-
ples (in Chapter 6) that were bypassed.



x · Chapter Guide



xi

Contents

Preface ....................................................................................................................................................... v

Chapter Guide ........................................................................................................................................ ix

Chapter 1 Introduction ..........................................................................................................................1
Precepts  ............................................................................................................................................................................1
Patterns ..............................................................................................................................................................................3
Analysis ..............................................................................................................................................................................5
Process ............................................................................................................................................................................ 11
Example .......................................................................................................................................................................... 12
Pragmatics ...................................................................................................................................................................... 17

Chapter 2 Prerequisites ...................................................................................................................... 19
Programming Concepts .............................................................................................................................................. 20
Programming Language Constructs ......................................................................................................................... 22
English Conventions .................................................................................................................................................... 28
Hardware and Operating System Concepts ............................................................................................................ 30

Chapter 3 Specifications and Implementations ........................................................................33
Statement Specifications ............................................................................................................................................. 33
Declaration Specifications .......................................................................................................................................... 51
Method Specifications ................................................................................................................................................. 52
Class Specifications ...................................................................................................................................................... 54

Chapter 4 Stepwise Refinement ......................................................................................................55
Divide and Conquer  ................................................................................................................................................... 55
Sequential Refinement  ............................................................................................................................................... 57
Case Analysis ................................................................................................................................................................. 70
Iterative Refinement .................................................................................................................................................... 74
Recursive Refinement ................................................................................................................................................. 82
Library of Patterns ........................................................................................................................................................ 84
Choosing a Refinement ............................................................................................................................................... 84
Extended Example: Running a Maze ....................................................................................................................... 85



xii · Contents

Chapter 5 Online Algorithms ............................................................................................................95
Data Processing ............................................................................................................................................................. 96
Data Compression ...................................................................................................................................................... 103

Chapter 6 Enumeration Patterns .................................................................................................. 113
Counting ...................................................................................................................................................................... 113
1-D Indeterminate Enumeration ............................................................................................................................. 115
1-D Determinate Enumeration ................................................................................................................................ 116
Enumeration Mod N  ................................................................................................................................................ 118
Sieve of Eratosthenes ................................................................................................................................................. 119
2-D Enumerations ...................................................................................................................................................... 122
Ramanujan Cubes ...................................................................................................................................................... 125
Rational Numbers ...................................................................................................................................................... 126
Magic Squares ............................................................................................................................................................. 128

Chapter 7 Sequential Search ..........................................................................................................129
Primality Testing......................................................................................................................................................... 130
Search in an Unordered Array .................................................................................................................................. 134
Array Equality ............................................................................................................................................................. 138
Sentinel Search ............................................................................................................................................................ 139
Find Minimal ............................................................................................................................................................... 140

Chapter 8 Binary Search...................................................................................................................143
An Application of Divide and Conquer ................................................................................................................. 143

Chapter 9 One-Dimensional Array Rearrangements .............................................................153
Reverse ......................................................................................................................................................................... 154
Left-Shift-k ................................................................................................................................................................... 157
Left-Rotate-1 ............................................................................................................................................................... 160
Left-Rotate-k ............................................................................................................................................................... 160
Dutch National Flag ................................................................................................................................................... 166
Partitioning .................................................................................................................................................................. 171
Collation ....................................................................................................................................................................... 173

Chapter 10 Median ............................................................................................................................. 175
Average-Case Linear-Time Algorithm ................................................................................................................... 176
Worst-Case Linear-Time Algorithm ....................................................................................................................... 180

Chapter 11 Sorting ..............................................................................................................................185
QuickSort ..................................................................................................................................................................... 185
MergeSort .................................................................................................................................................................... 188
Selection Sort  ............................................................................................................................................................. 189
Insertion Sort  ............................................................................................................................................................. 192
Stability ......................................................................................................................................................................... 197



xiii

Chapter 12 Collections......................................................................................................................199
Lists ............................................................................................................................................................................... 199
Histograms ................................................................................................................................................................... 205
Hash Tables.................................................................................................................................................................. 207
Two-Dimensional Arrays .......................................................................................................................................... 209

Chapter 13 Cellular Automata .........................................................................................................211
Top-level Code Structure.......................................................................................................................................... 212
Data Representation .................................................................................................................................................. 213
Display .......................................................................................................................................................................... 214
Update .......................................................................................................................................................................... 214
Game of Life ................................................................................................................................................................ 215

Chapter 14 Knight’s Tour...................................................................................................................219
Understanding the Problem ..................................................................................................................................... 219
Top-level Code Structure  ......................................................................................................................................... 221
Data Representation .................................................................................................................................................. 222
Top-level Procedures ................................................................................................................................................. 227
Initial Test .................................................................................................................................................................... 229
Method Solve .............................................................................................................................................................. 230
Boundary Conditions ................................................................................................................................................ 235
Testing, revisited  ........................................................................................................................................................ 236
Heuristics ..................................................................................................................................................................... 237
Testing, revisited yet again ........................................................................................................................................ 240
Monte Carlo Tours ..................................................................................................................................................... 240

Chapter 15 Running a Maze ............................................................................................................243
Top-level Code Structure.......................................................................................................................................... 243
Algorithm ..................................................................................................................................................................... 246
Data Representation .................................................................................................................................................. 249
Initial Tests ................................................................................................................................................................... 258
Direct Paths ................................................................................................................................................................. 259
Input .............................................................................................................................................................................. 261
Testing, revisited ......................................................................................................................................................... 263
Code Development, revisited .................................................................................................................................. 263
Direct Paths, revisited ................................................................................................................................................ 265
Boundary Conditions ................................................................................................................................................ 269
Self-Checking Code ................................................................................................................................................... 271
Testing, revisited yet again ........................................................................................................................................ 273

Chapter 16 Creative Representations .........................................................................................275
Tic-Tac-Toe .................................................................................................................................................................. 275
Checkers ....................................................................................................................................................................... 277
Eight Queens Problem .............................................................................................................................................. 280
Ricocheting Bee-Bee .................................................................................................................................................. 282



xiv · Contents

Chapter 17 Graphs and Depth-First Search .............................................................................. 285
Relations ....................................................................................................................................................................... 285
Graphs .......................................................................................................................................................................... 285
Depth-First Search ..................................................................................................................................................... 286
Running a Maze, Revisited ....................................................................................................................................... 287

Chapter 18 Classes and Objects................................................................................................... 293
Essential Notions ........................................................................................................................................................ 295
Pair ................................................................................................................................................................................. 296
Fraction ........................................................................................................................................................................ 301
Rational ........................................................................................................................................................................ 302
Subtype Polymorphism and Dynamic MethodDispatch .................................................................................. 302
ArrayList ....................................................................................................................................................................... 303
Parametric Polymorphism and GenericClasses ................................................................................................... 306
Garbage Collection .................................................................................................................................................... 313
Libraries ........................................................................................................................................................................ 314
HashSet ........................................................................................................................................................................ 315
Iterators......................................................................................................................................................................... 318

Chapter 19 Debugging ...................................................................................................................... 321
Example Bugs .............................................................................................................................................................. 322
Debuggers  ................................................................................................................................................................... 333
Defensive Programming............................................................................................................................................ 335

About the Author............................................................................................................................... 339

Acknowledgments .............................................................................................................................341

Appendix I Precepts ......................................................................................................................... 343
Appendix II Patterns ......................................................................................................................... 349
Appendix III Language Similarities .............................................................................................. 355

Concepts ...................................................................................................................................................................... 355
Constructs .................................................................................................................................................................... 356

Appendix IV Knight’s Tour ................................................................................................................ 371
Appendix V Running a Maze  ..........................................................................................................375
Appendix VI Enumerating Rationals ............................................................................................381
Appendix VII Exercises .................................................................................................................... 385

Bibliography ......................................................................................................................................... 403

Index ....................................................................................................................................................... 405



1

ChAPTER 1  
Introduction

You want to code, and toward that end have learned a bit of a programming lan-
guage. But it is insufficient to only know the language; you need to know how to use 
it. Think of the language as a toolbox of constructs. You have a saw, screwdriver, and 
screws, and understand in principle what each does. But until you learn how to use 
the tools effectively, you are far from being a skilled carpenter. This book is about 
how to write programs once you know a programming language. We aim to replace 
ad hoc groping with principled methodology.

This chapter introduces key aspects of the methodology, which involves use of 
precepts, patterns, analysis, and a deliberative process. These generic concepts are 
illustrated by specific instances that are important in their own right, and reappear 
throughout the book. In the exposition, we use constructs of a near-universal pro-
gramming language, which will serve as an initial introduction to the notation for 
some, and as a reminder for others. All are then combined in coding the complete 
solution to a simple programming problem.

Precepts 
Programming precepts are rules for programming. A precept is “a command or prin-
ciple intended especially as a general rule of action” [2], and this is what we want: A 
guide to follow as we program.

The first precept is self-referential:

☞ Follow programming precepts.

We aim for precepts that tell you what to do—rules that you can follow. This first 
rule is framed as an unequivocal statement, and suggests that the precepts are con-
sistent and unambiguous.

The second precept dashes hope that precepts can be followed mechanically:

☞ Ignore precepts, when appropriate.

Thus, you should attempt to follow precepts, if at all possible, but may on occasion 
have considered reason not to do so. You will have to exercise judgment. Precepts 
are teachings, not ironclad diktats.



2 · Introduction

Regardless of whether you are following the first or second precept, you should 
program in a controlled manner:

☞ Code with deliberation. Be mindful.

At each step, aspire to knowing exactly what you are doing, and why you are doing 
it. This practice may take the form of a reference to the precept you are following, 
or one that you are choosing to ignore in favor of some other precept. The idea is 
not so much that precepts tell you unambiguously what to do, as that they provide 
a framework for addressing competing choices, and being self-aware.

Precepts will often come in contradictory pairs, as with the first two above. Ralph 
Waldo Emerson wrote: “A foolish consistency is the hobgoblin of little minds” [3]. 
Thus, though we may hope for rules that can be followed in cookbook style, we do 
not preclude giving conflicting advice.

For example, consider the standard coding practice concerning the choice of 
names. You learn early on that program variables have names, and that it is helpful 
for a name to be suggestive of the variable’s purpose:

☞ Aspire to making code self-documenting by choosing descriptive names.

Using names like price, quantity, and amount is quite helpful for making a line 
of code like:

amount = price * quantity;

understandable and self-explanatory. The practice is strongly encouraged. But the 
precept has its limitations, and can easily lead to verbosity. 

Consider, for example, a program that implements some board game. The pro-
gram will be replete with references to the board and its coordinates. You don't really 
need long names for such frequently occurring variables. A line like:

piece = board[row+deltaRow[direction]][column+deltaColumn[direction]];

will be difficult to read and comprehend by virtue of the sheer number of characters 
in the text. Contrast its readability with:

piece = B[r+deltaR[d]][c+deltaC[d]];

in which you elect to use the first letters of some names, and prefixes of others. You 
trade the mnemonic value of full names for the benefit of brevity and succinctness. 
Repeated local reminders of purpose (the full names) are obviated by program-wide 
conventions (the abbreviated names).

The contravening precept is:

☞ Use single-letter variable names when it makes code more understand-
able.

This rule extends to other variables like r, c, and d the standard practice of using i, 
j, and k for indices. The choice of letters provides a hint of a mnemonic, which is 
enough to keep track of meaning.

It falls to you to decide which rule to follow in any given situation. In the face of 



Patterns · 3

competing precepts, the choice may not be cut and dried. There will be tradeoffs, 
and there will be room for personal taste. The important point is that you should 
make the choice with caution and deliberation:

☞ Resolve contradictory precepts with care.

A cautious approach to programming, one in which you follow precepts that 
advocate mindfulness and self-awareness, is reinforced by acceptance of the chal-
lenge facing you:

☞ Be humble. Programming is hard and error prone. Respect it.

You need all the help you can get, and precepts are offered in that vein.1
Notwithstanding the humility we advocate, you can and should still aim for per-

fection. Upon graduation from medical school, new doctors swear by the Hippocratic 
oath to “do no harm”. You, too, can aspire to make no mistakes.

One form of harm in coding is premature commitment to a line of code or a data 
representation that you will later regret:

☞ Aspire to coding it right the first time. Do no harm. Avoid writing code 
that must be redone. 

We shall call this careful approach “Hippocratic coding”.
As you make your decisions, in an effort to avoid venturing in the wrong direction, 

consider the likelihood that what you are about to write might have to be undone. If 
the risk seems too great, seek an alternative.

The perfection you should aim for is not only in the quality of the finished prod-
uct, but in the process that you follow in obtaining it, as well.

Patterns
One way to avoid mistakes and missteps is to choose a tried-and-true approach that 
you have learned from experience, or from a book. Many of these are framed as pro-
gramming patterns, and form a companion to the precepts:

☞ Master stylized code patterns, and use them.

Patterns help guide your thoughts as you consider your way forward.2
Some patterns are architectural. They provide a framework with few constraints, 

and may subsume the very step you are considering. But rather than taking that step 
directly, the pattern provides a general characterization of an approach you can fol-
low.

Imagine that you are confronted with a coding task that seems daunting, and you 
don’t know where to begin. The compute-use pattern is often suggestive:3

/* Compute. */
/* Use. */

1. The precepts are listed in Appendix I, and are introduced throughout the book.
2. The patterns are listed in Appendix II, and are introduced throughout the book.
3. Patterns contain italicized placeholders e.g., Compute and Use, that are intended to be 
replaced by your application’s specifics. 



4 · Introduction

Rather than viewing what you were hoping to accomplish as a monolithic, indivis-
ible goal, this pattern reminds you that you can structure your code as (first) the 
computation of some values in one or more variables, and (second) the use of those 
variables to accomplish your task.

This is a tiny suggestion, and may seem hardly worth writing explicitly. But for 
a novice, it may be the needed suggestion that breaks a seemingly-intractable chal-
lenge into more-manageable parts.

With experience, such architectural patterns become second nature, and you will 
find yourself using them without explicit mention. For example, you may immedi-
ately write:4

/* Let k be thus and such. */
if ( /* k has some desired property */ ) /* Do this and that. */

which is an instance of the compute-use pattern. Until an architectural pattern has 
been internalized, you may employ it explicitly as a crutch. This practice is an appli-
cation of humility in programming, and recognition that you can benefit from such 
a device.5

Code patterns are useful compositions of programming primitives you already 
know in your programming language. You could, of course, re-derive a pattern by 
reconstructing it from its constituent parts, one-by-one. But it is far better to have 
mastered and internalized the pattern as a single conceptual unit.

Consider the pattern known as one-dimensional indeterminate enumeration:6

/* Enumerate from start. */
   int k = start;
   while ( condition ) k++;

which basically says: Using variable k, count up from start until condition is no longer 
true. If you recognize that a coding task fits this mold, you can blast this pattern into 
your program in one fell swoop. It is relevant whenever you need the smallest inte-
ger (greater than or equal to start) for which some property does not hold. Clearly, 
condition is a computation that depends on k. The condition is said to be “parametric 
in k”, i.e., its value depends on the contents of variable k.

Patterns provide vocabulary that supports higher-level thinking. Consider any 
favorite verb or noun in English, and imagine it has been banned from your speech. 
You could, of course, do without the word, replacing each desired use with its defi-
nition. But you still know and think in terms of the banned word. This effect is what 
we wish to achieve with patterns. Pattern names, e.g., “compute-use” or “one-dimen-
sional indeterminate enumeration”, provide convenient handles for concepts. You 
may or may not remember the pattern’s name. What’s important is mastering the con-
cept that it embodies, and having it available both mentally, and at your fingertips.

4. The first line of this code segment is called a “statement comment”, and should not be 
viewed as commentary about the second line, but rather as an executable statement in its own 
right. Thus, the two lines are aligned one underneath the other. If a comment specifies subse-
quent code, that code will be indented beneath it. This indenting convention is discussed in 
Chapter 3 Specifications and Implementations.
5. The Compute-Use pattern is introduced here as an approach to overcoming a coding hur-
dle. In Chapter 4, however, we will see that it is a 2-step instance of a Sequential Refinement, 
one of the fundamental ways in which code is structured.
6. Patterns may contain specific variables, e.g., k, which you are free to replace with other 
variables.



Analysis · 5

Some patterns are specialized versions of more general patterns. Learn patterns 
in both their general form, and in their specialized instances. For example, the inde-
terminate-enumeration pattern can be seen as a restricted form of the fundamental 
iterative-computation pattern:

/* Initialize. */
while ( /* not finished */ ) {
   /* Compute. */
   /* Go on to next. */
   }

which basically says: To do something iteratively, first get ready (Initialize), and 
then (until finished) repeatedly do it (Compute) and get ready for the next time (Go 
on to next).

The general iterative-computation pattern is so important that a dedicated short-
hand is defined for it:

for ( initialize; condition; go-on-to-next ) compute

But this is an abbreviation, and is completely equivalent to the iterative-computation 
pattern that defines it.

Notwithstanding the generality of for-statements, they are typically reserved for 
determinate-enumeration, i.e., a pattern such as one of these:

for (int k=start; k<limit; k++) compute
for (int k=start; k<=limit; k++) compute
for (int k=start; k>limit; k--) compute
for (int k=start; k>=limit; k--) compute

We use such a pattern when we know the number of times a compute step must be 
executed: We count up (or down) in a variable, and perform the computation that 
many times.

The use of for-statements for only determinate enumeration is a convention of 
the programming community, and is one that we will follow, i.e., one could write the 
indeterminate-enumeration pattern as:

for (int k = start; condition; k++);

but we will never do so. Rather, we choose to let the keyword for be a signpost that 
indicates the presence of a determinate enumeration.

Analysis
Use of patterns is but one way to do Hippocratic coding; another is analysis. In short, 
don’t be too quick to write code:

☞ Analyze first.

Given a program to write, where should you begin, and how might you structure your 
thinking? What issues matter, and which are inessential details? What are strategic 
considerations, and which are tactical matters for later consideration? What about 
the problem is required, and what is left unsaid, and is therefore discretionary and 
can be decided later?



6 · Introduction

Problem
Surely, the first step is to:

☞ Make sure you understand the problem.

Arguably, you don’t fully understand a problem until you are finished writing the 
program, but early in-depth engagement with the problem’s requirements will help 
you to avoid rework later.

The problem of Running a Maze, which is used throughout the text, is introduced 
here as an example:

Background. Define a maze to be a square two-dimensional grid of cells sep-
arated (or not) from adjacent cells by walls. One can move between adjacent 
cells if and only if no wall divides them. A solid wall surrounds the entire grid 
of cells, so there is no escape from the maze.
Problem Statement. Write a program that inputs a maze, and outputs a direct 
path from the upper-left cell to the lower-right cell if such a path exists, or out-
puts “Unreachable” otherwise. A path is direct if it never visits any cell more 
than once.

Although the problem statement is reasonably well specified, an early probing of the 
setup is still in order. Here are some questions you might ask yourself:

• Do I understand the nouns: maze, grid, cell, wall, path, and direct path?
• Do I understand the verbs: Specifically, how does one move between cells?
• How is a maze represented in the input?
• Is there any upper limit on the size of a maze? Is there a lower limit?
• What is the expected program behavior if the input is not well-formed?
• Is a direct path the same as a shortest path?
• What if there is more than one direct path?
• How is a path to be displayed in the output?

Posing such questions, and answering them, is a worthy first step. 
Problem descriptions can be volatile, and one little word can make all the dif-

ference. For example, suppose the requirement were to output a most direct path? 
A correct choice of algorithm will depend on whether “most direct” means “short-
est”, and neglecting to consider that question initially risks setting off in an entirely 
wrong direction.

One way to test your understanding of the problem is to make up sample input, 
and solve it by hand. You can often come up with an answer intuitively even though 
you may never have seen the description of a systematic method for doing so. As you 
work the problem by hand, you are effectively following the steps of a program that 
you somehow already know, perhaps only subconsciously. The exercise both firms 
up your understanding and begins the process of programming:

☞ Seek algorithmic inspiration from experience. Hand-simulate an algo-
rithm that is in your “wetware”. Be introspective. Ask yourself: What am 
I doing?

Architecture
The analyze-first precept advocates that you defer writing code while digesting the 
problem. Nonetheless, an early idea of the likely architecture of the entire program 

1 2 3
5 4
6 7

8
9 10 11



Analysis · 7

is useful for framing your subsequent analysis. What are some possibilities for the 
top-level program structure?

• Online computation performs on-the-fly processing of input data items. A sample 
problem whose solution has this form is: Read an unbounded list of integers, 
and say whether each is prime or composite. A maze is a list of cells, but there 
isn’t much that can be done with a single cell other than store it in a program 
variable for later processing. This pattern isn’t a good fit.

• Offline computation (first) inputs data into program variables, (second) performs 
a computation, and (third) outputs an answer. This pattern seems perfect.

We can decide up front to adopt the offline-computation architecture without fear 
of doing harm because it is unlikely to need undoing. 

The offline-computation pattern is:

/* Input. */
/* Compute. */
/* Output. */

which can be used as a scaffolding for restating and fleshing out the problem spec-
ification:7

/* Input a maze of arbitrary size, or output “malformed input” and stop if the
   input is improper. Input format: TBD. */
/* Compute a direct path through the maze, if one exists. */
/* Output the direct path found, or “unreachable” if there is none. Output
   format: TBD. */

The elaborated pattern is essentially a structured reiteration of the problem statement, 
with some additional details spelled out, and some explicit indications of what deci-
sions are being deferred.

The architecture gives us the overall form of the program we will write.

Data
Programs are instructions for manipulating values, where instructions are code, and 
values are data. Analysis of a problem must address both code and data, and neither 
consideration should get very far ahead of the other. You should:

☞ Dovetail thinking about code and data.

We alternate between the two consideration because each informs the other. We 
have articulated an architecture, which has slightly advanced our thinking about the 
structure of the code; we balance that now by reflecting on the data.

The top-level architecture has brought into focus three principal computational 
steps that will need to work in concert: Input, Compute and Output. It is critical to:

☞ Specify how individual program steps will cooperate with one another.

The data are the glue that binds the steps together, and allows them to achieve their 

7. We introduce here the presentation device of using red to highlight a change from a pre-
vious version of code.



8 · Introduction

common goal. It is important to have this data flow in mind as we proceed through 
our analysis.

One distinguishes between external data, i.e., the values a program inhales and 
exhales as input and output, and internal data, i.e., the values of program variables 
that flow between programs steps. Clearly, a maze flows into the program, and a path 
(and possible error indications) flow out from the program. Similarly, a maze flows 
from Input to Compute, and a path flows from Compute to Output.

Typically, the critical part of a program is its Compute step, and the Input and 
Output steps are of secondary importance. If a problem statement leaves the external 
data representations unspecified, as in the present case, we will have latitude to design 
it to fit our convenience after the internal representation has been established.

In contrast with the external data representation, the internal data representation is 
of primary importance because it is the critical fabric that connects program parts:

☞ A program’s internal data representation is central to the code; consider 
it early.

Finding a good internal data representation can simplify code; conversely, selecting 
a poor representation can introduce needless obstacles.

To begin an analysis aimed at choosing an internal data representation, start by 
asking: What will the algorithm need that must be represented in program variables? 
The answer typically includes nouns of the problem statement. In this case, we must 
represent the maze and its constituent parts (cells and walls), and a path (and its 
constituent steps). The nouns of a problem description typically name passive enti-
ties. In contrast, the verbs of a problem description name active aspects. They name 
procedures that modify the representation dynamically, and functions that query its 
current state after such modifications. For example, whereas the maze is an unchang-
ing value, movement in the maze is a dynamic notion that modifies the path.

Components
You can’t decide what operations to provide in a vacuum. Rather, you need to 

understand the interplay between the operations and the application that will use 
them. This mutual dependence is why we advocate dovetailing consideration of code 
and data. The precise choice of queries and actions is not rigidly fixed, and is up for 
negotiation. Ask: What is needed by the maze-running algorithm, and what can be 
offered by the data representation? Think of the data representation as a service, and 
the algorithm as a client. Together, they are going to interact, but each must accom-
modate the other: The data must offer operations to the client that are sufficient for 
the client to navigate the maze, but the client must limit its demands to operations 
the service can reasonably provide. You, the programmer, play both client and server 
in this negotiation. 

A data representation that changes in response to client actions encodes state. The 
maze-running algorithm is an actor that computes its way toward a solution, and 
records its progress by invoking operations that update the state. You can think of 
the last cell of a path as the location of the actor that is attempting to extend the path 
(if possible) or retract it (if necessary). 

The idea of an algorithm as actor is a bit abstract. You may find it helpful to intro-
duce (for conceptual purposes) an animate actor, say, a rat sniffing its way through 

external data

input

compute

output

internal data

internal data

external data

CLIENT
algorithm

SERVER
maze
path



Analysis · 9

the maze. With a rat in hand, our task becomes more concrete: We are coding the 
rat’s algorithm.

It is noteworthy that introducing a rat changes the nature of the client/server 
interface. Whereas an abstract maze-running algorithm might have embraced an 
omniscient point of view, looking down on the maze from the sky above, with the 
client a rat, the algorithm can adopt a rodent’s more limited perspective. The rat 
doesn’t really know where it is, or in what absolute direction it is facing. When the 
rat is in the upper-left cell of the given maze, it only sees a wall (when it faces up or 
left) or a non-wall (when it faces right or down).

An algorithm articulated from the rat’s point of view can be localized and oblivi-
ous to coordinates that describe the rat’s absolute position and absolute orientation 
in space. These can then be hidden inside the service that is being provided by the 
data component, which strongly influences the nature of the queries and actions 
flowing between the client and server. This is known as data and information hiding, 
which practice strongly influences the modularity of code.

Our purpose is not to solve the entire problem here; rather, our goal has been to 
illustrate the use of precepts and patterns, and the role of program analysis early on 
in development. Thus, we leave off further discussion of mazes, for now.8

Problem Transformation and Reduction
Our next example, the Ricocheting Bee-Bee problem, illustrates the potential of 
analysis at a higher level than code and data. It involves the representation of the 
problem itself.

Background. A square tin box measuring one foot on each side has a slit of 
size d centered on one side. Insert a bee-bee gun at the center of the slit at angle 
Θ, and shoot. The bee-bee ricochets off sides, one after another. On each rico-
chet, the angle of reflection is equal to the angle of incidence.
Problem Statement. Write a program that inputs d and Θ, and outputs the 
total distance the bee-bee travels before it exits.

A direct iterative solution that simulates the successive legs of the bee-bee’s trajec-
tory may be excruciating to write, and you may regret starting to code too hastily. 
So, take a deep breath, and think hard. Might the problem be amenable to simplifi-
cation? Rather than a frontal attack:

☞ Consider problem transformation or problem reduction: Solve a differ-
ent problem, and use that solution to solve the original problem.

This rule calls for innovation, invention, and even inspiration. But to ignore the pos-
sibility of problem reduction risks consigning yourself to a potentially laborious and 
painful coding effort.

A common way to simplify a problem is to reduce it to a known problem (and its 
solution) in Mathematics:

☞ Sometimes iteration is unnecessary because a closed-form solution is 
available.

Said another way: Don’t let a problem statement that suggests iteration lead you 
down the garden path toward an avoidable, brute-force approach.

8. We return to the maze-running problem in Chapter 4 Stepwise Refinement, again in 
Chapter 15 Running a Maze, again in Chapter 17 Graphs and Depth-First Search, and finally 
in Chapter 19 Debugging.

↑ → ↓ ←

d

1’

1’



10 · Introduction

Consider this problem:

/* Output the sum of 1 through n. */

with its knee-jerk, brute-force coding solution:

/* Output the sum of 1 through n. */
   int sum = 0;
   for (int k=1; k<=n; k++) sum = sum + k;
   System.out.println( sum );

In the famous anecdote about attempting to discipline schoolboy Carl Frederich 
Gauss, a teacher assigned Carl the time-consuming task of adding the integers from 
1 to 100. But to the teacher’s surprise, the future Prince of Mathematicians immedi-
ately answered 5050 because he analyzed the problem [4].

You, too, can perform the analysis and write the one-liner:

/* Output the sum of 1 through n. */
   System.out.println( n*(n+1)/2 );

The Gauss story serves as a reminder to look for simplifications before you code. 
An important source of inspiration is analogy. The Ricocheting Bee-Bee problem 

calls for summing the lengths of a list of line segments, so we ask: What other prob-
lem is framed similarly? Answer: Computing arc length in calculus.9

Say you are given a function y=f(x), and seek s, the length of the path along f 
between x=a to x=b. You can slice f between a and b into n pieces, and approximate 
s as the sum of the lengths of the chords. The n chords are akin to the n separate zig-
zag legs of the bee-bee’s trajectory, and the goal is the same, the sum of the lengths 
of the segments, a process known as numerical integration. The similarity between 
the two problems seems auspicious.

In calculus, you learn that as n gets bigger the approximation to s gets better. In 
the limit, as n gets arbitrarily large, the arc length along f from a to b is given by the 
integral shown at the right.

You also learn that for some f that this integral can be solved in closed form, i.e., 
rather than computing s iteratively by numerical integration, you can obtain it by 
plugging the values of a and b into some formula. The possibility of a closed-form 
solution for the integral depends on the idea that as n gets larger, the line segments 
get shorter, and the piecewise-linear approximation to f improves. If f is a smooth 
function, we can then hope that the sum of the segment path lengths will converge 
to some simple formula.

Wouldn’t that be wonderful: A single formula that expresses the total path length 
of the bee-bee in terms of d and Θ instead of the contortions involved in determin-
ing the lengths of each trajectory segment, and summing them up.

Analogies are inexact; in fact, that’s what makes them analogies and not the 
problem itself. The value of an analogy is that it may suggest a fresh way to look at 
a problem. So, let’s compare the calculus and Bee-Bee problems, and see if we gain 
insight from the analogy:

• In the calculus problem, the curve whose length we want to compute is given by 
a fixed function f, and is defined as the limit of piecewise-linear approximations 
to that length as the number of pieces grows without bound. A closed-form 

9. In calculus, one typically first learns about determining the area under a curve, and later 
learns about determining the arc length of the curve itself [5].

n

n+1

x

y

a b

f

x

y

a b

f

n



Process · 11

solution can (in some cases) be determined by manipulating the formula for 
the curve f.

• In the Bee-Bee problem, the length we want to compute is the end-to-end 
length of a fixed sequence of connected line segments that are determined by 
d and Θ. No specific function f is given, but the segments can be thought of as 
chords of many such functions. 

How can we reconcile these disparate points of view? By finding a related prob-
lem, one whose solution is the same as that of the Bee-Bee problem, but where the 
two points of view are not different. That transformed problem would be one that 
would be easier to solve. In seeking such a transformation, we notice that if f were 
a straight line, the zig-zag line segments would necessarily align with f exactly.

We have seen that one resource for problem reduction is mathematics; another is 
physics. Sometimes, problem analysis leads to an analogous physical apparatus, and 
to a question in that transformed domain whose answer is applicable. The analogy 
with integration in calculus suggests that we might benefit from a changed point of 
view in which a zig-zag trajectory becomes a straight line. In the physical domain, we 
can ask a related question: What if the box were made of paper, not tin?10

As with Running a Maze, it is not our purpose to solve the entire Ricocheting 
Bee-Bee problem here, so we move on to other considerations.11

Process
The goal of Hippocratic coding is aspirational: Get it right the first time. But we 
should be realistic: We will sometimes get it wrong, and require undoing work. Such 
realism is expressed by:

☞ Don’t be wedded to code. Revise and rewrite when you discover a better 
way.

In fact, the only thing worse than having beaten a path in the wrong direction is 
soldiering on in that ill-advised direction, digging yourself deeper and deeper into 
a hole. Chalk it up as an exploration from which you have learned something, and 
start over. 

Writers of prose are sometimes advised to compose a first draft, which is a tacit 
acceptance of the inevitability of writing a second draft. This practice is not rec-
ommended for programs, which have an exacting correctness requirement, not 
to mention a tool for validating solutions, i.e., a computer with which code can be 
tested. 

Littering your program with inaccuracies leads to debugging, i.e., the need to track 
down errors, but you should:

☞ Avoid debugging like the plague.

It can be very painful and demoralizing. Furthermore, it tends to reduce you to a 
worm’s-eye way of thinking about programming, as you trace execution one step at 
a time, inspecting the values of variables in a computer-like manner, with your nose 
pressed to the screen.

10. Examples of problem reduction appear in Chapter 4 Stepwise Refinement (p. 69), 
Chapter 16 Creative Representations (p. 282), and Chapter 17 Graphs and Depth-First Search.
11. It is solved in Chapter 16 Creative Representations (p. 282).



12 · Introduction

Rather than giving in to the idea of first and second drafts, it is better to: 

☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) 
program.

There are effective techniques that allow you to write and test small amounts of code 
at a time, and these are recommended. To state the precept differently: Maintain end-
to-end correctness. This development approach involves finding ways to relax the 
notion of a full solution so that partial (albeit, end-to-end) solutions are testable. To 
do so, you identify a series of testable versions that converge to the final program.

One approach to staying in control omits whole steps, working on one compo-
nent at a time, e.g., in Running a Maze, skip the Input and Output steps, and focus 
on the Compute step, manually hard coding the internal data representation of test 
cases, as needed.

Another approach omits a program requirement, e.g., in Running a Maze, find any 
path, and don’t require that it be direct. But simplification will only be helpful if you 
have reason to believe that you will be able to add back the omitted requirement later, 
building on the partial solution you develop. You need to acquire a nose for sensing 
when omitting a requirement introduces a discontinuity that renders a solution for 
the simplified problem irrelevant, e.g., if the maze problem were to require finding 
a shortest path, then a solution that only finds paths connected to the perimeter of 
the maze is likely to be useless.

A key objective in the programming process is to be able to:

☞ Test programs incrementally.

That way, if and when something goes wrong, you will not have far to look for the 
cause because little will have changed in your code since the last time nothing was 
wrong. You may wish to retain the infrastructure written during incremental devel-
opment for possible future use, or may wish to discard it when the program is 
complete.

Incremental testing does not mean that you should give in to the temptation to 
test half-baked work. First, keep your trigger finger off the “execute button”, and think 
deeply about your work product. Then, experience the delight of finally running your 
code, and having it work correctly the first time.

Example
To recap the chapter, and illustrate some of the espoused principles, we develop code 
to compute the integer part of the square root of a given integer:12

/* Given n≥0, output the Integer Square Root of n. */ 1

Although an implementation of Integer Square Root is only a few lines long, it is 
sufficiently subtle to benefit from a principled process. Of course, we could pres-
ent the code, and explain how it works. But that would be antithetical to our goal: 
Teaching how to program.

12. Code developments are presented as a series of numbered snapshots. They are a “movie” 
that shows the literal, recommended coding order. Do not view the sequence of frames as a 
mere expository textbook convention for explaining code. Rather, the sequence is the order 
in which we suggest that the code should be written.



Example · 13

Similarly, we forgo a solution that uses the Math library:

/* Given n≥0, output the Integer Square Root of n. */ 
   System.out.println( Math.floor( Math.sqrt(n) ) );

because it would trivialize the problem, and deprive us of a useful example that 
demonstrates principles.

First, we make sure we understand the problem. The phrase “Given integer n≥0” 
means that a variable named n already contains the nonnegative integer in question. 
No input statement is required. It is not our concern where n came from, and how it 
got there. It is not our concern what n represents. The problem statement requires 
that we compute a value in terms of n, and output it. The code should work in any 
context in which a variable n exists and contains a value.

Because it is unlikely that without the aid of library functions the integer part of 
the square root of n can be described in a single expression whose value we can out-
put, we will need to first compute it in a separate step, and then output it. Accordingly, 
we adopt the compute-use pattern:

/* Compute. */
/* Use. */

where Compute figures out what to print, and Use prints it. 
The two steps must communicate with one another, and can do so via a variable. 

The name “r”, suggestive of “root”, is chosen for that variable. Thus, we refine the top-
level specification of the Integer Square Root problem as two sub-steps:

/* Given n≥0, output the Integer Square Root of n. */ 
   /* Let r be the integer part of the square root of n≥0. */
   System.out.println( r );

2

where the second sub-step prints whatever value the first sub-step stores in r.
We now zoom in on the first sub-step:

/* Let r be the integer part of the square root of n≥0. */

and work on it in isolation. When working on a subproblem, we disregard the sur-
rounding context, as if we were wearing blinders. It is not our concern that some 
other part of the code, e.g., the very next line, intends to print the contents of vari-
able r. We only need to focus on setting the variable appropriately, i.e., as per the 
subproblem specification. 

We may not yet know exactly how to compute r, but one thing is clear: Because 
n is not bounded, if we are not using a library routine or powerful arithmetic oper-
ation that subsumes an unbounded number of computational operations, our own 
code will need to perform those steps. 

One mechanism for expressing an unbounded number of computation steps in 
a small, finite number of lines of code is iteration. The highfalutin precept might be: 
When you sense the opportunity for iteration, give it serious consideration. We pre-
fer the more down to earth:

☞ If you “smell a loop”, write it down.

Merely writing down a template for iteration makes consequential progress because 



14 · Introduction

it establishes a framework for thinking about what, exactly, needs to be done repet-
itively, and for how long.

The opportunity for iteration is often obvious. However, there are two forms of 
iteration, and before blasting in code you should think carefully about which form 
is appropriate for the case in hand:

☞ Decide first whether an iteration is indeterminate (use while) or deter-
minate (use for).

The number of times an indeterminate iteration repeats is not knowable in advance; 
it will be discovered in the course of the computation. In contrast, the number of 
times a determinate iteration repeats is knowable from the get-go, either as some 
constant, or as the value of an arithmetic expression that can be written in terms of 
program variables.

Adhere to the admonition:

☞ Beware of for-loop abuse; if in doubt, err in favor of while.

and be cautious, systematic, and analytical in your choice of iteration construct. 
Specifically, don’t be too quick to write the iteration using a for-statement, which 
deceptively seems all-powerful:

/* Let r be the integer part of the square root of n≥0. */
   for (int r=0; r<=n; r++) _______

The for-statement shown, on its face, announces your intention to consider all inte-
gers between 0 and n. The idea of iterating through the integers one-by-one has 
merit. However, we don’t want to consider each and every one of them up through 
n. Rather, we are looking for the smallest integer with a certain property, and want 
to stop when we find it. This requirement is best provided by the one-dimensional 
indeterminate-enumeration pattern:

int r = 0;
while ( condition ) r++;

which is a search for the smallest nonnegative r for which condition is false. We 
don’t yet know what that condition should be, but this pattern fits the bill. We drop 
it into place:

/* Given n≥0, output the Integer Square Root of n. */ 
   /* Let r be the integer part of the square root of n≥0. */
      int r = 0;
      while ( condition ) r++;
   System.out.println( r );

3

We haven’t committed ourselves to a specific limit on r, and thus can be reasonably 
sure we have done no harm.13

We now focus on the condition, and again put on blinders. We ask: What property 

13. However, it could be argued that we have committed to considering integers, one at a 
time in sequence, and that by doing so may have precluded a faster, less granular approach for 
converging on the r we seek. We note this possibility, in passing, but move on. See Exercise 52.



Example · 15

of r guarantees that r is not the integer part of the square root of n? Why do we ask 
this? Because when that property holds, we want to advance to the next r. 

As phrased, we are asking an abstract question, but not everyone is equally good 
at abstract reasoning. If you are going to practice Hippocratic coding, you need to 
develop a sense of when you are “on thin ice”, i.e., when you have reached the limit 
of your own ability to reason abstractly.

It is important to avoid overestimating your ability, and then “shooting from the 
hip”. For example, here are some wild guesses you might be tempted to try for the 
condition:

r*r != n
r*r < n
r*r <= n

But such a “hit and miss” approach, in which you generate plausible conditions and 
then try them out, is discouraged. Remember: Avoid debugging like the plague.

Accept the principle:

☞ There is no shame in reasoning with concrete examples. 

Even Ph.D. mathematicians count on their fingers some of the time. 
Here is a systematic itemization of concrete examples in which, on each row, we 

list the values of n for which the given r is the correct answer:

r r * r n
0 0 0

1 1 1, 2, 3

2 4 4, 5, 6, 7, 8

3 9 9, 10, 11, 12, 13, 14, 15

Creating such a table is part of gaining familiarity with the requirements of the prob-
lem in hand:

☞ Elaborate the expected input/output mapping explicitly.

The examples provide a target to aim for.
Now pick a row to think about carefully, and in detail. Say you pick the row where 

r is equal to 2:
• Ask: For which n would 2 be the integer part of the square root of n? 

 – Answer: 4, 5, 6, 7, or 8. In each of those cases, we want the condition to 
be false because r is the correct answer, and we need to stop iterating. 
Conversely, if n is 9, 10, 11, or more, we want the condition to be true 
because we need to keep iterating. Why? Because 2 is not the correct 
answer.

• Ask: What is special about 9?
 – Answer: It is the square of 3.

• Ask: But what is special about 3?
 – Answer: It is one more than 2, the current value of r. So, when n is the square 
of one more than 2, or more, we need the condition to be true so that r will 
advance to 3.



16 · Introduction

Such concrete reasoning informs the generalization that we must now make 
because the code we write must work for arbitrary r and n. The phrase “when n is 
the square of one more than 2, or more” brings us right to the threshold of what we 
are looking for, which we must now express in terms of arbitrary r:

☞ Alternate between concrete reasoning and abstract reasoning.

Eureka: What we are seeking is a property of r+1, not a property of r itself. The con-
dition is some binary relationship between r+1 and n. We can drop a template for 
the comparison into the code:

/* Given n≥0, output the Integer Square Root of n. */ 
   /* Let r be the integer part of the square root of n≥0. */
      int r = 0;
      while ( (r+1)*(r+1) ____ n ) r++;
   System.out.println( r );

4

Note that we only take a baby step, lest we err. Specifically, we delay writing the rela-
tional operator, leaving a blank in its stead.

We are ready to choose the relational operator, but need to realize, in all humility, 
that our situation is precarious. We are juggling multiple binary considerations, any 
one of which could trip us up if we misconstrue it backwards:

• The condition must express when to keep iterating, not when to stop.
• The relation concerns r+1, not r.
• We have chosen to compare (r+1)*(r+1) with n, not r*r with n-1.
• We have chosen to write (r+1)*(r+1)___n rather than n___(r+1)*(r+1).

Be careful and systematic because you are on the edge of being mentally over-
loaded.

We know that there are only six comparison operators (==, !=, >, >=, <, <=), and 
can proceed to eliminate all but one of them, in turn. The two operands around the 
blank provide visual context for reasoning about each operator. We can use that con-
text to help keep our head screwed on straight, and avoid the pitfalls we listed. 

The comparison operator:
• Can’t be == or != because the condition must be true for an unbounded num-

ber of possible values of n, and false for an unbounded number of values of n. 
Neither “==” nor “!=” can do that.

• Can’t be > or >= because we need to stop for big r and little n, not the other 
way around.

• Can’t be < because we need to keep going, not stop, when r is 2 and n is 9.
So, the correct comparison operator is “<=”:

/* Given n≥0, output the Integer Square Root of n. */ 
   /* Let r be the integer part of the square root of n≥0. */
      int r = 0;
      while ( (r+1)*(r+1) <= n ) r++;
   System.out.println( r );

5

This completes the code for computing and printing the Integer Square Root of any 
integer n≥0.



Pragmatics · 17

Pragmatics
One of the happy rewards of programming is the opportunity to run code on a 
computer, and have it dance for us. But before we can have that pleasure, we need 
to complete the program.

First, we need code to obtain as input the n whose root we wish to compute. The 
input doesn't miraculously appear in the computer; rather, the program must ask 
for it:

/* Output the Integer Square Root of an integer input. */
   /* Obtain an integer n≥0 from the user. */
   /* Given n≥0, output the integer part of the square root of n. */
      /* Let r be the integer part of the square root of n≥0. */
         int r = 0;
         while ( (r+1)*(r+1) <= n ) r++;
      System.out.println( r );

6

Next, this code must be embedded in certain gobbledygook:

import java.util.Scanner;
class boilerplate {
   static Scanner in = new Scanner(System.in);
   static void main() {
      /* Output the Integer Square Root of an integer input. */
         /* Obtain an integer n≥0 from the user. */
         /* Given n≥0, output the Integer Square Root of n. */
            /* Let r be the integer part of the square root of n≥0. */
               int r = 0;
               while ( (r+1)*(r+1) <= n ) r++;
            System.out.println( r );
      } /* main */
   } /* boilerplate */

7

You do not need to understand the gobbledygook in detail at this juncture; that will 
come later. Suffice it to say that its purpose is to provide a receptacle for our code 
(boilerplate), extend our base programming language with a library mecha-
nism that supports input (Scanner), and define a named operation for activating 
the code (main).

Finally, the remaining step is to use this framework to obtain the input n:

import java.util.Scanner;
class boilerplate {
   static Scanner in = new Scanner(System.in);
   static void main() {
      /* Output the Integer Square Root of an integer input. */
         /* Obtain an integer n≥0 from the user. */
            int n = in.nextInt();
         /* Given n≥0, output the Integer Square Root of n. */ 
            /* Let r be the integer part of the square root of n≥0. */
               int r = 0;
               while ( (r+1)*(r+1) <= n ) r++;
            System.out.println( r );
      } /* main */
  } /* boilerplate */

8



18 · Introduction

This completes the program. You can now invoke main, provide input (say, 7), and 
get the output (say, 2).

We have omitted pragmatic steps that are required for running a completed 
program on your computer. This is a task that is specific to your programming 
environment, and is not described here because there is too much variety in such 
environments. Integrated Development Environments (IDEs) are tools that hide 
many such details, and provide a standard programming environment that works 
for multiple setups, but there are many of them, too. Compounding the issue, read-
ers may elect different languages, for example choosing one from those listed in 
Appendix III Language Similarities, and mentally make the small needed mappings 
from the book’s notation to the selected programming language.

Seek supplemental documentation or instruction for the programming language 
and environment you plan to use.



19

ChAPTER 2  
Prerequisites

Familiarity with computers and computer applications is ubiquitous, and so too is 
an understanding of basic notions of computation gained from using software. You 
are assumed to already know that software is implemented as programs whose code 
controls the behavior of the computer, and that authoring software is called program-
ming or coding. The goal of the first section of this chapter, Programming Concepts, 
is to firm up your intuitive grasp of these concepts with precise definitions, and to 
arm you with standard vocabulary.

Familiarity with the basics of coding is also common, and you may well already 
know some of a programming language. The goal of the second section of this chapter, 
Programming Language Constructs, is to present systematically the programming 
notation used in the book.

Languages differ in appearance, but at the level with which we are concerned, there 
are few substantive distinctions. For example, you may have already learned about 
conditional statements, and depending on the programming language to which you 
have been exposed may have seen them as:

if condition then statement1 else statement2 

or

if ( condition ) statement1 else statement2 

or

if condition: statement1
else: statement2 

Syntax (punctuation) varies from language to language, but the semantics (meaning) 
of conditional statements is essentially always the same: If the value of the condition is 
true, execute statement1, otherwise execute statement2. Don’t get too hung up about 
syntax; the semantics is what is important.

The notation we adopt is a subset of the Java programming language, but no claim 
is made that it is exactly Java, or even that our language is completely or precisely 
defined. Our subject is how to program, and not the exact details of a language. No 
attempt is made to define constructs in their full (possible) generality; rather, we 
only define what is needed for the book.14

14. The correspondences between this subset of Java [6] and similar subsets of Python [7], 



20 · Prerequisites

The language is presented in staccato fashion to facilitate use as a checklist. As with 
the first section, you may find that the material helps to make your prior knowledge 
more precise, and reinforces effective use of vocabulary. If you find the section too 
challenging, you may need to consult supplemental material, e.g., on the Internet, or 
attend appropriate recitation sessions of your class, if offered.

The third section of this chapter, English Conventions, lists the abbreviations we 
use when writing code specifications in English. This should be readily accessible.

The final section, Hardware and Operating System Concepts, delves a bit into 
details of how computers represent data, and how operating systems execute pro-
grams. It can be treated as optional, or consulted, on demand.

Programming Concepts
The following concepts are standard for most imperative programming languages, i.e., 
languages that describe computation by a sequence of commands.

algorithm. An algorithm is a method for solving a problem, or performing a task.
program. A program is an algorithm written down in a programming language.
programming language. A programming language is a system of notation for pro-

grams that can be executed by a computer.
computer. A computer is a device for executing programs written in a programming 

language. A computer has a processor and a memory.
processor. A processor is a device that can obey the instructions of a machine-code 

program.
memory. A memory is a device that stores both machine code and values.
machine code. Machine code is a low-level programming language specific to a par-

ticular brand of processor.
execution. To execute a program is to perform the steps it dictates. Execution is also 

known as running the program. Execution of a machine-code program fol-
lows the fetch-execute cycle, whereby the processor performs two steps 
repeatedly:

• Fetch the next machine-code instruction from the memory.
• Execute that instruction.

Analogously, execution of a program written in a high-level language repeat-
edly performs two steps:

• Fetch the next statement.15
• Execute that statement.

environment. A program is executed by a computer in an environment that includes 
its external data, i.e., its input data and its output data:

Code

Computer

Processor Memory
Values

input sequence

input cursor

output sequence

C/C++ [52], and JavaScript [53] are summarized in Appendix III. As you can see, they are 
not very different.
15. Statements are a generic concept defined later in this section; they also a specific syn-
tactic category of programming-language construct, as defined in the next section. Syntactic 
categories are signified by italics; beside statements, these include expressions, conditions, opera-
tions, operands, variables, types, names, declarations, and definitions.



Programming Concepts · 21

external data. External data include input data, which are a linear sequence of char-
acters, with a distinguished point in the sequence denoted by the input 
cursor that indicates the next character to be input. External data also 
include output data, which are a linear sequence of characters, to which 
the program can append at the end.

compiler. A compiler is a program that can translate a program written in a high-
level programming language, e.g., Java, into an equivalent program written 
in a low-level programming language, e.g., machine code for the Intel x86 
family of processors.

interpreter. An interpreter is a program that can execute a program written in a 
high-level language without first using a compiler to translate it to machine 
code.

value. A value is an entity that is manipulated by a program. Values have types.
type. The type of a value is a categorization that determines how the value can be 

used in computation.
variable. A variable is a named memory location that can contain a value of a par-

ticular type. A variable is depicted by a box, prefixed by its name, and that 
contains its value.

assignment. Assignment is the act of storing a value in a variable, thereby overwrit-
ing its previous contents.

statement. A statement is a programming language construct whose execution has 
an effect on the state of execution.

state. The state of a program’s execution consists of a location in its code, the values 
of its variables, the text in its input and output data, and the position of its 
input cursor.

effect. An effect is a change in the state of a program’s execution. The program is said 
to transition from one state to another.

location. A location in code is the statement being executed, and the ordered list of 
method call sites whose invocations are not yet completed.

expression. An expression is a programming language construct whose evaluation 
yields a value. An arithmetic expression is an expression whose value has 
a numeric type.

condition. A condition is an expression whose value is logical rather than numeric, 
i.e., either true or false. Such values are also known as type boolean.16

evaluation. To evaluate an expression is to perform its operations on its operands, 
where these are specific to the given programming-language, e.g., in the 
expression “1+2”, the operands are “1” and “2”, and the operation is “+”.

declaration. A declaration is a programming language construct whose execution 
has the effect of creating a variable with a name, and containing a value. The 
name has a scope, and the variable has a lifetime.

scope. The scope of a name is the portion of a program’s text where the name is 
meaningful. 

lifetime. The lifetime of a variable is the time interval within a program’s execution 
during which the variable exists.

1-D array. A one-dimensional array is a named linear sequence of variables indexed 

16. George Boole (1815-1864) was an English mathematician, and author of The Laws of 
Thought. The mathematical treatment of logic is known as Boolean Algebra, with a capital “B”, 
in his honor. The datatype is named boolean, in his honor, but with a lower-case “b” [44].

valuename

…3210
…name



22 · Prerequisites

by consecutive integers, starting at 0. In diagrams, by convention, the name 
appears to the left of the sequence, and the indices appear above the vari-
ables. Each variable in the sequence is called an element of the array.

2-D array. A two-dimensional array is a named rectangular arrangement of variables 
indexed by pairs of integers, the row and column, each of which starts at 0. 
In diagrams, by convention, the name appears to the upper-left of the arrange-
ment, and the indices appear to the left of the rows and above the columns. 
Each variable in the arrangement is called an element of the array.

scalar. A scalar is a variable that is not an array.
definition. A definition is a programming language construct that creates a method 

or a class.
method / procedure / function. A method has a name, and is a parameterized 

sequence of declarations and statements that can be executed by invoking (or 
calling) it from a statement or expression. Methods have return-types. If the 
return-type is void, the invocation only has effect, and can only appear in 
a statement. If the return-type is non-void, the method is known as a func-
tion, its invocation yields a value of the given type, and the invocation can 
appear in an expression or statement. The return value of a function that is 
invoked as a statement is discarded. Methods are also known as procedures.

class. A class is a group of related declarations and definitions.

Programming Language Constructs
The following constructs are standard across most imperative programming languages. 
There are minor syntactic differences, and there are some fine-grained distinctions, 
but these need not concern us.

Statements are executed for their effect; declarations are executed to create vari-
ables; expressions are evaluated to obtain their values.

 Statements and declarations are grouped into method definitions, which are grouped 
with other declarations into classes.

A program is a distinguished method in a distinguished class. By convention, that 
method is often named main, and the class name is descriptive of the application.

Statements
variable = expression;

Meaning: Assign the value of expression to the variable.17
variable++;

Meaning: Shorthand for variable=variable+1; and called an auto-increment 
statement.

variable--;
Meaning: Shorthand for variable=variable-1; and called an auto-decrement 
statement.

if ( condition ) statement1 else statement2
Meaning: Execute statement1 if the value of the condition is true, otherwise 
execute statement2.

17. The type of expression must be “compatible” with the type of variable, i.e., the value of 
expression can be appropriately converted to a value of the type of variable. However, we do not 
define when that conversion is possible, as the subject is more technical than we wish to discuss. 

…210name
…0
…1
…2

3
……………



Programming Language Constructs · 23

if ( condition ) statement
Meaning: Execute statement if the value of the condition is true.

while ( condition ) statement
Meaning: Repeatedly execute statement provided the condition is true 
before each execution. A while-statement is called a loop, and its constit-
uent statement is called its body. Executing the body zero or more times is 
called iterating.

for ( initialize; condition; update ) statement
Meaning: Equivalent to the general iterative-computation pattern:

initialize;
while ( condition ) {
   statement
   update
   }

where initialize is one of the following:
type name = expression

Meaning: Declare scalar variable name, and initialize it with the 
value of expression.

name = expression
Meaning: Assign the value of expression to the already-declared, 
named variable.

Update is one of the following:
name = expression

Meaning: Assign the value of expression to the named variable.
name++

Meaning: Auto-increment the named variable.
name--

Meaning: Auto-decrement the named variable.
block

Meaning: Execute the block, which groups declarations and statements, and 
permits them to be used in a syntactic context where only a single state-
ment is otherwise allowed, e.g., in an if-statement, a while-statement, or a 
for-statement.

System.out.println( expression );
Meaning: Convert the value of expression to a String (if necessary), append 
it to the output data, and advance to the beginning of the next line in the 
output data. The String representation of an arithmetic value is base 10.

System.out.print( expression );
Meaning: Convert the value of expression to a String (if necessary), append 
it to the output data, and remain on the same line in the output data.

System.out.println( );
Meaning: Advance to the beginning of the next line in the output data.

name( arguments );
Meaning: Invoke the named method with the values of arguments, which is 
a comma-separated list of expressions. Invoking a method with a list of argu-
ments has the effect of:

(a) evaluating each argument expression, 



24 · Prerequisites

(b) declaring new variables for the method’s parameters, 
(c) assigning the argument values to the corresponding parameters, 
(d) evaluating the block of the method, and 
(e) returning to the invocation site, either by execution of a return 

statement, or by completing execution of the method’s body. If the 
method has non-void type, but was invoked as a statement, the com-
puted return value is discarded.

return;
Meaning: Return to the method invocation site. This form of return-
statement is only permitted in a method of type void.

return expression;
Meaning: Return to the method invocation site with the value of expression. 
If the method has non-void type t, expression must have a type that is com-
patible with t. This form of return-statement is not permitted in a method 
of type void.

Block
{ declarations-and-statements }

Meaning: Declarations-and-statements is a list of intermixed declaration and 
statement constructs. A block is executed by executing each declaration and/
or statement, in sequence. Variables declared in a block go out of existence 
each time execution of the block completes.

Variables
name

Meaning: The variable with the given name.
class-name.name

Meaning: The named variable (or method) that is declared in class class-name, 
e.g., Integer.MAX_VALUE (or Math.sqrt).

name[ expression ]
Meaning: The value of expression is known as an index, and the named one-di-
mensional array is a sequence of subscripted variables. Let k be the value of 
expression. The variable denoted by name[expression] is the kth variable of the 
sequence, starting at the 0th variable. If k is negative, or is not less than the 
length of the array, a runtime “subscript-out-of-bounds” error is triggered. 
The time needed to access an array element is approximately the same as 
the time needed to access a non-subscripted variable, and is independent 
of the value of the index. 

name[ expression1 ][ expression2 ]
Meaning: The named variable is a two-dimensional array, and the meaning is 
similar to the one-dimensional case. Expression1 and expression2, known as 
the row and column indices, are required to be less than the height and width 
of the named array, respectively. See the one-dimensional case, above.



Programming Language Constructs · 25

Expressions

Constants
0, 1, 2, …, -1, -2, …    (type int)
0L, 1L, 2L, …, -1L, -2L, …   (type long)
6.0221409f+23, …    (type float)
0.0, 3.14159, 6.0221409e+23, …  (type double)
true, false     (type boolean)
'a', 'b', 'c', …, '\u0000'   (type char)
"characters"     (type String)

Primitives
variable

Meaning: The value contained in the variable.
in.nextInt()

Meaning: The int value returned by invoking the method in.nextInt(). 
The value returned is the binary fixed-point representation of the base-10 
integer that is in the input data at the position of the input cursor. Invocation 
has the effect of advancing the input cursor beyond the integer that has been 
read. Variable in is assumed to have been initialized by:

Scanner in = new Scanner(System.in);
earlier in the code.

name( arguments )
Meaning: The value returned by an invocation of the named non-void 
method with the values of the given arguments. The last statement executed 
by the method must be a return-statement, which provides the value for 
the method invocation. (See method invocation under statements.)

new type[ expression ]
Meaning: Create a 1-dimensional array of variables, of the given type, whose  
length is given by the value of expression. The variables of the array are known 
as its elements, and are indexed by nonnegative integers, starting at 0.

new type[ expression1 ][ expression2 ]
Meaning: Create a 2-dimensional array of variables, of the given type, whose 
height and width are given by the values of expression1 and expression2, respec-
tively. The variables of the array are known as its elements, and are indexed 
by pairs of nonnegative integers, starting at 0.

Binary Operations
operand1 binary-operator operand2

where the operands are expressions, and the binary-operators are:
 +, -, *, /, %   (arithmetic)
 <, <=, >, >=, ==, !=  (relational)
 &&, ||    (boolean)
 +    (concatenation)

The binary arithmetic operators +, -, *, /,  and % are addition, subtraction, 
multiplication, division, and modulus (i.e., remainder after integer division). 



26 · Prerequisites

The type of the result is integer if both operands are integer; and is floating 
point if either operand is floating point. 

The arithmetic binary relational operators <, <=, >, >=, ==,  and != are 
less-than, less-than-or-equal, greater-than, greater-than-or-equal, equal, and 
not equal. 

Operators == and != should not be applied to non-arithmetic values, 
e.g., strings and arrays, until certain subtleties are explained in Chapters 
12 and 18.

The binary operator + when at least one operand has type String 
is string concatenation. A common use of this is to construct output for 
System.out.println(...) that consists of an arithmetic value, e.g., an 
int, concatenated with the value of a String constant, e.g., a single space 
character " ". The non-String argument, e.g., the value contained in the 
int, is converted to a String, e.g., its base-10 representation, and then the 
two strings are concatenated. Without the space character being appended 
to the output, consecutive integers would run into one another.

Unary Operations
unary-operator operand

   where the operand is an expression, and the unary-operators are:
 -    (arithmetic)
 !    (boolean)

The unary arithmetic operator “-” is negation. The unary Boolean opera-
tor “!” is not.

Grouping
( expression )

Meaning: The value of the expression.

Types
int

Meaning: A value of type int is a 32-bit, two’s-complement, fixed-point 
binary integer. Default value: 0.

long
Meaning: A value of type long is a 64-bit, two’s-complement, fixed-point 
binary integer. Default value: 0L.

float
Meaning: A value of type float is a signed, 32-bit, floating-point number. 
Default value: 0.0f0.

double
Meaning: A value of type double is a signed, 64-bit, floating-point number. 
Default value: 0.0e0.

boolean
Meaning: A value of type boolean is either true or false. Default value: 
false.

char
Meaning: A single Unicode character [8]. Default value: '\u0000'.



Programming Language Constructs · 27

String
Meaning: A value of type String is a linear sequence of 0 or more Unicode 
characters Default value: null.

void
Meaning: There are no values or variables of type void. A method defined 
with void return type returns no value, and can only be invoked as a state-
ment for its effect.

type[]
Meaning: A value of type type[] signifies a one-dimensional array of vari-
ables, each of which has type type. Default value: null.

type[][]
Meaning: A value of type type[][] signifies a two-dimensional array of vari-
ables, each of which has type type. Default value: null.

Declarations18
type name;

Meaning: Create a variable name of the given type initialied with the default 
value of the type. There are two kinds of variables: local variables and class 
variables.

A variable declared in a method is known as a local variable. Its scope 
begins at the declaration, and extends to the end of the block within which 
its declaration appears. The scope is either the whole method (if that block 
is the defining block of the method), or an inner block within the method.
The lifetime of (each dynamic instance of) a local variable begins when the 
declaration is executed (in a new dynamic instance of the declaration), and 
ends when (that instance of) the block completes.

A variable declared in a class is known as a class variable. The declara-
tion of a class variable is always prefixed by the modifier static, i.e.,19

static type name;

Its scope begins at the declaration, and extends to the end of the class defi-
nition within which its declaration appears. The lifetime of a class variable 
begins when its declaration is executed, and lasts thereafter for the rest of  
program execution. The order in which classes are initiated is unspecified.

If type ends with brackets, i.e., [] or [][], the brackets can be moved 
to the right of name. For example, the declaration “int[] A;” can be writ-
ten as “int A[];”, and means the same thing.

type name = expression;
Meaning: Create a variable name of the given type, and initialize it with the 
value of expression.

type name[] = { list-of-expressions };
Meaning: Create a variable name, which signifies a 1-D array of type elements, 
and initialize it with the values given by the comma-separated list-of-expres-
sions.

18. Declarations (this section) and method definitions (next section) can be prefixed by 
modifiers, which are explained in the text, when introduced. These include: static, public, 
private, protected, and final.
19. Chapter 18 introduces variables whose declarations in a class are not prefixed by the mod-
ifier static. Such variables are known as instance variables.



28 · Prerequisites

Definitions
static type name( parameters ) block

Meaning: Define a method with the given name and parameters. If type is 
void, the method can only be invoked as a statement for its effect. If type is 
non-void, the method can only be invoked as an expression that computes 
a value. The block is called the body of the method. Methods of void type 
are referred to as procedures, and methods of non-void type are referred to 
as functions.20

class name { declarations-and-methods }
Meaning: Declarations-and-methods is a list of intermixed declaration and 
method definition constructs. A class is a scope within which names of vari-
ables and methods are made accessible to the code therein. Outside the class, 
the names of variables, e.g., v, and methods, e.g., m, must be qualified by the 
class name, e.g., name.v and name.m. 

Arguments and Parameters
arguments is 0 or more expressions separated by commas

Meaning: Before entry to the method being invoked, each argument is eval-
uated. 

parameters is 0 or more type-name pairs separated by commas 
Meaning: On entry to the method being invoked, a variable is declared for 
each type-name pair. Each such variable, known as a parameter, has the given 
type and name, and is initialized with the value of the corresponding argu-
ment given in the method invocation. The scope of a parameter is the method 
definition in which it appears. The lifetime of (each dynamic instance of) 
a parameter begins on the invocation of (a new dynamic instance of) the 
method, and ends when (that instance of) the method returns.

Comments
/* any-text */

Meaning: Ignored.
// any-text-to-end-of-line

Meaning: Ignored.

Libraries
Libraries are predefined classes. One such library is Math, which contains methods 
such as Math.abs (for absolute value), Math.sqrt (for square root), Math.pow 
(for exponentiation), Math.min (for minimum), Math.max (for maximum), etc.

English Conventions
Comments are written in English, but abbreviations are important for keeping them 
succinct. Because comments play a key role in the methodology advocated in this 
book, it is worthwhile to summarize our conventions. Formal specification languages 

20. Chapter 18 introduces methods whose definitions are not prefixed  by the modifier static. 
Such methods are known as instance methods.



English Conventions · 29

have been devised for what we write in comments, but we stop short of embracing 
one. Rather, we use English, with the quasi-formal locutions, below. The notations 
of this section cannot be used in code outside of comments.
Let variable be text

Meaning: Set the variable (or variables) equal to the value(s) described by 
text. Synonymous with “Set variable equal to text”.

Given text1, text2
 Meaning: Provided that the state is as described by text1, establish text2.

name
Meaning: The name is either a local indeterminate used in the comment as 
a pronoun, or it is an actual program variable, in which case it either already 
exists, or is to be declared.

variable[expression1..expression2]
Meaning: The consecutive elements of the array variable with indices in 
the range expression1 to expression2, inclusive. When expression2 is less than 
expression1, the sub-array referred to is empty, i.e., contains no elements.

⟨expression1, expression2⟩
Meaning: A pair of values, considered as a single entity, consisting of the 
value of expression1 and the value of expression2.

s.t. text
Meaning: Such that text.

i.e., text
Meaning: That is, text.

e.g., text
Meaning: For example, text.

iff text
Meaning: if and only if text.

resp. text
Meaning: Respectively, text. 

in situ
Meaning: In place, e.g., without copying values to an extra array of vari-
ables.

variable^expression
Meaning: Variable raised to the power given by the value of expression.

Example
/* Given A[0..n-1] in non-decreasing order, let A[0..n-1]
   be rearranged in situ s.t. A is in non-increasing order,
   e.g., in the reverse order. */

Meaning: Provided the code is executed in a state in which:
• There is an integer variable named n that contains a value (say, n), or 

alternatively that n is an arithmetic expression that evaluates to the 
integer n;

• There is a numerical array named A whose length is at least n, i.e., A has 
elements A[0] through A[n-1];

• The array elements A[0] through A[n-1] contain values that are arranged 
in numerical order, but that may contain duplicates;



30 · Prerequisites

rearrange the values in those array elements to have the opposite order. That 
is, after execution of the code, the values in the consecutive array elements 
A[0] through A[n-1] never increase. Do not use an extra array.

Hardware and Operating System Concepts
This (optional) section peeks under the hood, and provides a few concrete details 
about how computation on a computer works.
bit. A bit is the smallest unit of information in a computer. The word “bit” is both 

descriptive (as in, “a small quantity”) and an acronym (binary digit). A bit 
can be stored in a 2-state physical device, i.e., a switch that is either “on” or 

“off ”, “up” or “down”, etc. By convention, the two possible states of a bit are 
known as 0 and 1.

byte. A byte is eight bits. Because each bit in a byte can independently be 0 or 1, a 
byte has 28=256 possible values.

byte-addressable memory. A byte-addressable memory consists of an ordered 
sequence of bytes (depicted by gray boxes) each of which has an individual 
numerical address.

0 address

address. An address is the name by which a byte in a memory is known. A memo-
ry’s set of addresses is known as its address space.

word. A word is the unit of information conveyed to or from a memory in a single 
operation. Modern computers typically have 8-byte (64-bit) words. The 
locus of a memory-transfer operation is specified by the address of a single 
byte, but the transfer involves a whole word in the vicinity of that byte.

access time. The access time of a memory reference is the time required to convey 
a word of information to or from the memory.

RAM. A RAM is a physical device that implements a byte-addressable memory for 
which the access time is uniform and independent of the address. “RAM” 
is an acronym for Random Access Memory, so called because any of its 
bytes can be accessed, in an arbitrary order, in the same amount of time.

memory hierarchy. A stratification of computer memories by size, access time, and 
price. Typically, large memories have slower access times, and are less expen-
sive per byte. Conversely, smaller memories can have faster access times, but 
are more expensive per byte. We consider three strata of the memory hier-
archy: virtual, physical, and cache. Memory hierarchies achieve efficiency 
by exploiting locality of memory accesses.

locality. Locality is a measure of the confinement of memory accesses to limited 
regions of an address space for extended periods of time. Locality allows 
bytes to temporarily reside in a smaller but faster stratum of the memory 
hierarchy. 

address translation. When a byte at address b in a given stratum s of the memory 
hierarchy temporarily resides at address b′ in another stratum s′ of the hier-
archy, references to b in s must be mapped to b′ in s′. That mapping is known 
as address translation.

process. A process is a machine-code program in the midst of being executed. A com-
puter may have multiple active processes at any given moment. Processes 



Hardware and Operating System Concepts · 31

reference locations in virtual memory, where a virtual address typically cor-
responds to an offset in a region of disk memory reserved for the process. A 
disk may be an actual rotating device, or a solid-state facsimile of one. Disks 
have a large address space, and are inexpensive per byte.

virtual memory. Processes run in an address space of virtual memory, but processors 
execute programs in physical memory, where the correspondence between 
virtual and physical addresses is maintained dynamically by address trans-
lation. Let b be the virtual address of a byte referenced by a process. If byte 
b (in virtual memory) currently resides at address b′ (in physical memory), 
the reference to b is translated to a reference to b′, and that byte is accessed 
accordingly.

0 virtual address

0 physical address

b

b′

If byte b does not currently reside in physical memory, then a location b′ 
(in physical memory) must be found for it, the value currently in b′ must 
be copied back to whatever byte (in virtual memory) that physical loca-
tion is currently being used for, and b can then be copied into b′. Ideally, a 
byte in physical memory will be referenced many times before it needs to 
be expelled. For practical reasons, bytes are grouped into pages, e.g., blocks 
of 512 or 1024 bytes, and the expulsion mechanism (known as paging) 
is performed on whole pages at a time. A typical paging policy expels the 
least-recently-used (LRU) page.

physical memory. The physical memory of a computer is a RAM that is shared by 
all active processes of the computer. Computers typically accommodate 
incremental installation of additional RAM, with the benefit of increasing 
the amount of virtual memory that can be mapped into physical memory at 
the same time, thereby reducing paging, and speeding execution.

cache memory. A cache is a small but very fast memory that temporarily represents 
bytes of physical memory. Abstractly, address mapping from physical to 
cache memory is similar to address mapping from virtual memory to physical 
memory. However, the two mechanisms are distinct, and their implemen-
tations in hardware are quite different.

array layout. One-dimensional arrays of length n of m-byte elements are typically 
laid out in n consecutive m-byte groups, starting at some base address in 
virtual memory:

0 1 kbase n address

Access to the kth array element requires computing its virtual address as 
base+m·k, and then using an operation that either loads or stores values 
at that location, where the corresponding physical-memory location is 
obtained by address mapping. The simple model whereby the time to access 
an array element A[k] is constant, and is independent of the value of k, 



32 · Prerequisites

assumes that entire array already resides in physical memory, and ignores 
the time involved in paging regions of the array into physical memory.

numerical representation. A numerical representation is a convention whereby a 
sequence of bits is interpreted as the representation of a number. There are 
two principal forms of numerical representation: fixed point and floating 
point. Each form has two varieties: 32-bit and 64-bit.

fixed-point binary integer. A fixed-point binary integer is a sequence of bits inter-
preted positionally as powers of 2. Thus, just as the decimal fixed-point 
integer 101 represents (1·102)+(0·101)+(1·100), i.e., a hundred and one, so 
the binary fixed-point integer 101 represents (1·22)+(0·21)+(1·20), i.e., five. 
When N-bits are interpreted as an unsigned integer, they can represent 0 
through 2N-1 The types int and long are 32-bit and 64-bit two’s-comple-
ment fixed-point integers, respectively.

two’s-complement integer. A convention for representing signed integers in N bits. 
A leading 0 bit followed by the remaining N-1 bits is interpreted as a posi-
tive (N-1)-bit binary integer, and a leading 1 bit followed by the remaining 
N-1 bits is interpreted as a negative binary integer. In this case, instead of 
the next number after 2N-1-1 being interpreted as the positive number, 2N-1, 
it is interpreted as the most negative negative number, -2N-1. Continuing 

“up”, we eventually reach all 1s, which as an unsigned integer would be the 
largest value, but in two’s complement, is interpreted as -1.

0 2N-1 2N-1

-1-2N-1 0 2N-1-1

N bits as unsigned

N bits as signed

To make this concrete, here is the case for N=3:

as signedas unsignedbits
00000
11100
22010
33110
-44001
-35101
-26011
-17111

floating-point number. A floating-point number is a number in scientific nota-
tion. It consists of a signed mantissa, and a signed exponent. In base-2, if 
the value of the mantissa is m, and the value of the exponent is e, then the 
number represented is m·2e. The float type has 32 bits, and the double 
type has 64 bits. The exact interpretation of bits need not be understood. 
Suffice it to say that double has more bits than float for both mantissa 
and exponent. The correspondence between binary (base-2) floating-point 
numbers (used internally) and decimal (base-10) floating-point numbers 
(used externally for input and output) is approximate.

character set. A character set is an encoding of symbols as sequences of bits.
Unicode. The international Unicode standard is a character set intended to represent 

almost every known symbol on Earth, including many emojis [8]. The most 
common 65,536 symbols are representable as a char, and are encoded in 
two bytes. The remaining symbols are encoded as two char values.



33

ChAPTER 3  
Specifications and 
Implementations

Programs serve a purpose: They satisfy a requirement. Some requirements are minus-
cule, e.g., square a number; others are grandiose, e.g., control a rocket to the moon. 
Ours is not to reason why. We accept a requirement as the goal of our client, and 
design a program to meet the challenge.

In large and complicated projects, an extensive dialogue between client and pro-
grammer may be needed to elicit exactly what is wanted, but once the goals have 
been identified, a specification is written to serve as a contract. The programmer 
then writes the code that implements the specification, and delivers the completed 
system. These roles and activities are at play regardless of whether you are working 
for an actual client, e.g., your teacher or boss, or for yourself (in which case you are 
playing two roles, and it can be important to keep in mind which role you are fulfill-
ing at any given moment).

Your program will be a composition of various kinds of programming-language 
constructs:

• Statements, which define effects.
• Declarations, which create program variables.
• Methods, which group statements and declarations into meaningful opera-

tions.
• Classes, which aggregate methods and declarations into coherent modules.

The contribution of each component in your program design can itself be specified. 
This chapter discusses such component specifications, and explains how they work 
together to define and implement a program specification.

Statement Specifications
A specification is a precise articulation of a requirement. A specification says what 
is required, not how it is to be accomplished. Writing specifications for code is an 
essential aspect of programming.

Specifications are written in a language other than the programming language. 
Formal specification languages have been devised, but we shall use English.



34 · Specifications and Implementations

 Specifications are written in the program as comments, which allow escape from 
the constrained syntax of the programming language’s other constructs:

/* Specification. */

Here is a simple example:

/* Output the square of an integer that is provided as input data. */

This specification is an instance of what is known as an input-output specification, or 
I/O spec, for short. It says what is in the input data: An integer. It says what must 
happen: The square of that integer must be output. It does not say how to make this 
happen.

A specification may serve as the contract for an entire program. For the example 
given, the program’s complete input consists of one integer, and the program’s com-
plete output consists of one output, its square.

Alternatively, a specification may define only a small requirement within a larger 
context. The specification is understood relative to what has happened so far during 
program execution. For the example given, the program’s input data may consist of 
many things. Some initial input may already have been read into the program, but 
the input cursor now resides immediately before an integer that has not yet been 
read. Similarly, during program execution up to this point, much may have already 
been output. The specification requires that the square of the next input integer now 
be appended to that output. A specification that is a part of the program is called a 
fragment or segment.21

Implementations
An implementation is a precise statement of how a requirement is to be met. A speci-
fication is a desire, whereas its implementation is a description of how that desire is 
to be fulfilled. In general, there are many possible implementations for a given spec-
ification. Selecting and writing an implementation for a specification is an essential 
aspect of programming.

The implementation of a specification is written indented beneath it using this 
pattern:

/* Specification. */
   Implementation

For example,

/* Output the square of an integer that is provided as input data. */
   int n = in.nextInt(); System.out.println( n*n );

This implementation is written as two consecutive executable statements in the 
programming language. Specifications are typically easier to understand than code: 
They are English.

21. The text contains many examples that are fragments. If you wish to run them on a com-
puter, you must provide them with the context of a full program, e.g., the boilerplate that is 
presented in section Pragmatics of Chapter 1. Additionally, if the fragment assumes the exis-
tence of certain variables, they should be declared and initialized ahead of the fragment.



Statement Specifications · 35

The implementation is called a refinement of the specification. The refinement 
states the same thing as the specification, but in greater detail. In the squaring example, 
the detail is total because the refinement provides complete code that implements 
the specification.

In contrast, a refinement may provide only partial additional detail. For exam-
ple, the following refinement introduces variable s, and specifies that it be set to the 
square of n, but leaves open the question of how that square is to be computed:

/* Output the square of an integer that is provided as input data. */
   int n = in.nextInt();
   /* Let s be the square of n. */
   System.out.println( s );

Further refinement may use multiplication to compute s:

/* Output the square of an integer that is provided as input data. */
   int n = in.nextInt();
   /* Let s be the square of n. */
      int s = n*n;
   System.out.println( s );

Alternatively, we can compute s in some different way, e.g., if the multiplication 
operation “*” were disallowed, we could compute s by repeated addition of the 
absolute value of n:

/* Output the square of an integer that is provided as input data. */
   int n = in.nextInt();
   /* Let s be the square of n. */
      int m = Math.abs(n);
      int s = 0;
      for (int k=0; k<m; k++) s = s + m;
   System.out.println( s );

Authors of essays are often urged to write hierarchical outlines, which use inden-
tation to indicate subordination. In an outline, the idea expressed on a given line is 
elaborated by ideas expressed in lines indented below it. We have the same intent 
with refinements.

The implementation is secondary to the specification in the sense that it is not 
needed for a human reader who wishes to understand the relationship between the 
specification and the rest of the program. Of course, the implementation is essen-
tial for the program because the specification is written in a language that is beyond 
the capacity of the programming language to understand (not to mention that it is 
a comment, and is therefore completely ignored).

Specification Style
Write specifications as imperatives, i.e., authoritative commands to do something. 
Focus on action words, i.e., verbs. Specifications are not literature. They should be 
precise, staccato, and to the point. Avoid meandering descriptions.

Succinctness in specifications is beneficial. One way to achieve this is by elimi-
nating needless words. Here is a small step in that direction in which the words “that 
is” are omitted:



36 · Specifications and Implementations

/* Output the square of an integer that is provided as input. */
   int n = in.nextInt(); System.out.println( n*n );

Stylized forms are also helpful. One such convention is to describe input before 
output:

/* Input an integer, and output the square of that integer. */
   int n = in.nextInt(); System.out.println( n*n );

Returning to the goal of succinctness, and the technique of eliminating needless 
words, we may use a pronoun:

/* Input an integer, and output its square. */
   int n = in.nextInt(); System.out.println( n*n );

Pronouns (like “its”) work well when they are unambiguous, but are often confusing 
when you cannot tell which of two or more things is intended.

A useful convention is to introduce names in place of anonymous pronouns. 
Typically, single letters are used for such names. For example:

/* Input integer k, and output k squared. */
   int n = in.nextInt(); System.out.println( n*n );

When a specification must refer to more than one thing, you can use different letters 
to distinguish between them. 

Although a name such as “k” is often called a “variable”, this risks confusion with 
program variables. In the specification, k is a named pronoun, not a memory loca-
tion that contains a value. A name such as “k” is used within the specification for 
brevity and disambiguation. It has no meaning outside the specification. Its scope is 
said to be local to the specification, and it has no relationship with any other uses of 
the same name elsewhere in the program.

 Any letter can serve as a name. For example, the following specification uses “j” 
instead of “k”, and says the same thing:

/* Input integer j, and output j squared. */
   int n = in.nextInt(); System.out.println( n*n );

You can use the name “n”, as in:

/* Input integer n, and output n squared. */
   int n = in.nextInt(); System.out.println( n*n );

in which case you can consider it as serendipitous that the pronoun and variable hap-
pen to have the same name, or you can consider the specification to be speaking of 
the variable “n”. However, a different implementation of the same specification, one 
that doesn’t even have a variable, drives home the point that in the specification “n” 
is not necessarily speaking of a variable:22

22. This implementation outputs n squared as a double, e.g., 4.0, whereas the previous imple-
mentations output it as an int, e.g., 4. The specification does not require a particular format, 
so we are free to choose.



Statement Specifications · 37

/* Input integer n, and output n squared. */
   System.out.println( Math.pow(in.nextInt(),2) );

A final step results in an even more succinct specification:

/* Input integer n, and output n*n. */
   int n = in.nextInt(); System.out.println( n*n );

Here, we use the programming notation “n*n” in the specification. This is common 
and permissible. It could be argued that in using an arithmetic expression, we are 
losing some of the benefit of the English specification because comprehension now 
requires knowing that “*” means “multiply”. Specifications have an audience, and you 
should adopt a style for specifications that is appropriate for the literacy of your audi-
ence. If you are your own audience, feel free to adopt conventions that suit yourself. 

When you use an arithmetic expression like n*n in a specification, you are not 
requiring the implementation to compute n squared, say, using that expression. 
Rather, you are merely referring to the expression’s value for whatever purpose you 
may have. You may not even need to compute it, as in the following specification and 
refinement for printing the square root of whatever number is input:

/* Input integer x, and output the number n such that x=n*n. */
   System.out.println( Math.sqrt(in.nextInt()) );

Specifications as Higher-Level Code
Suppose you need to exchange the contents of two variables, (say) x and y. The 
specification: 

/* Swap x and y. */

can be read as an unambiguous statement in a higher-level language than your pro-
gramming language. In this case, the names “x” and “y” are not pronouns; rather, 
they are the names of actual program variables. 

If the programming language had included a form of statement such as:

swap x with y;

you would have written it that way, but alas there is no such construct, so you write it 
as a specification that you will implement later using actual statements of the program-
ming language. The specification is referred to as a statement-comment. It is precise, 
unambiguous, and as good as a real statement for expressing a desired effect. 

Having written the specification, you can carry on coding whatever broader prob-
lem you were working on, and not get distracted by implementing the swap now. You 
are following a process suggested by the precept:

☞ Write comments as an integral part of the coding process, not as 
afterthoughts.

Statement-comments let you stay focused on your higher-level goals, and not get 
mired in details. Of course, if you forget to implement a statement-comment, the 



38 · Specifications and Implementations

program won’t run correctly, but that is the least of your problems. Concentrate 
on what you were trying to accomplish in the first place when you wrote the state-
ment-comment.

When an implementation is so standard that you can blast it in, and not lose your 
train of thought, you may prefer to do so, and get it over with:

/* Swap x and y. */
   int temp = x;
   x = y;
   y = temp;

Regardless of whether you write the implementation now or later, the specification 
still serves the useful purpose of stating a desired net effect. Thus, write specifications 
even when you intend to immediately write the code that implements them. Don’t 
write code whose purpose must be discerned by deciphering low-level statements; 
rather, provide the summary in a high-level specification.

When you read code, ignore indented implementations as if they had been folded 
into an ellipsis. For example, think of the code above as:

/* Swap x and y. */
   ...

If your code editor actually supported such folding as a feature, you might use it to 
hide the implementation, which would then allow you to better see the relationship 
between the specification and the rest of the program. The indentation convention 
supports something similar: It helps you to visually skip over the implementation, 
and better interpret the specification in its context.

Each specification relates to the rest of the program in two distinct directions. In 
the inward direction, the relationship is between the specification and its implemen-
tation. In the outward direction, the specification is part of an implementation for an 
encompassing specification. 

To illustrate how a specification faces two ways, like the Roman god Janus, con-
sider this implementation of swap, in which we introduce a completely superfluous 
specification for pedagogical purposes:

/* Swap x and y. */
   /* Declare int variable temp, and initialize it to x. */
      int temp = x;
   x = y; 
   y = temp;

The specification (in red) relates inward to its implementation:

int temp = x;

and outward to the encompassing specification: 

/* Swap x and y. */

for which it provides an element of an implementation. Note that the actual declara-
tion and initialization code is indented still further because it is now the refinement 
of the (red) specification. 



Statement Specifications · 39

As before, you can think of eliding the implementation, and viewing a specifica-
tion as if it were executable:

/* Swap x and y. */
   /* Declare int variable temp, and initialize it to x. */
      ...
   x = y; 
   y = temp;

The three lines (not counting the ellipsis) indented beneath the swap specification 
are its implementation, and are a hybrid mixture of code and specification. You don’t 
need to see the elided code to understand that the implementation of swap is cor-
rect because you read the statement-comment not as commentary but as if it were 
an executable statement.

It can be confusing that indentation is used for a second purpose in code: 
Compound programming-language constructs are frequently formatted using inden-
tation to indicate the relationship between the whole construct and its constituent 
subparts. For example,

if ( expression ) statement1 else statement2

and

while ( expression ) statement

are frequently formatted as

if ( expression ) 
   statement1
else
   statement2 

and

while ( expression ) 
   statement

Similarly, indentation is often used for the body of a block, as in:

if ( expression ) {
   list-of-statements1
   }
else {
   list-of-statements2 
   }

and

while ( expression ) {
   list-of-statements
   }

These uses of indentation are distinct from use to show subordination of an imple-
mentation to its specification. Indentation is said to be overloaded. Indentation in 



40 · Specifications and Implementations

code signifies two different things: The specification-implementation hierarchy, and 
the whole-part hierarchy.

It is unfortunate that the construct we use for specifications is called a “comment” 
because this suggests that they are inessential window dressing. Yes, from the point 
of view of the programming language, comments are inessential. They are frequently 
omitted, and are sometimes only added to code later as an afterthought, perhaps to 
avoid having points deducted by the homework grader. But that attitude is entirely 
the reverse of what is being advocated here. You are trying to learn how to program, 
both easily and well. There is no point in writing code before you know what that 
code is supposed to accomplish. Write a specification (in a comment) that defines 
the task required before writing code that performs the task.

Because specifications are written in comments, they are totally ignored by the 
programming language, as if they were not there. Thus, what we are describing is a 
mere convention, and the programming language couldn’t care less whether the spec-
ifications are there or not. But it is the premise of this book that specifications, and 
the conventions described here for writing them, are essential for programming. It 
is up to you, however, to exercise the required self-discipline for following the con-
vention we advocate.

What? Not How?
When we write a specification, we follow the precept that:

☞ A statement-comment says exactly what code must accomplish, not 
how it does so.

Sometimes the distinction between what and how is abundantly clear because the 
specification states only the net effect required, and is completely mute on the sub-
ject of how to achieve that effect. For example, the specification:23

/* Rearrange the values of array A[0..n-1] into non-decreasing order. */

in no way constrains the algorithm used to do the rearrangement.
The notion of specifications as higher-level code somewhat muddies the waters. 

A statement comment says “do this”, or “do that”. It is an imperative, and its verbs 
can come close to commands in a programming language in which the specifica-
tion strongly resembles executable code, e.g., “swap x with y;”. In fact, that’s the 
whole point: What for a low-level language is how for a higher-level language, with 
its higher-level abstractions. Programming in a large measure involves inventing new 
conceptual frameworks, and then using them.

Internalizing the distinction between what and how takes time and practice. There 
is a natural tendency to describe processes and not requirements, and this leads people 
to write specifications in operational terms. The tendency is acute when the likely 
implementation is iterative.

For example, suppose (at some place in your program) you need to know whether 
a value v occurs in the one-dimensional array A. You may be inclined to write:

23. This is the first mention of arrays outside of Chapter 2 Prerequisites. If your understand-
ing of arrays and subscripting is shaky, you may wish to review the relevant material there. The 
notation “A[j..k]” in a specification refers to the region of array A consisting of elements A[j] 
through A[k].



Statement Specifications · 41

/* Scan through array A from left to right, inspect each element of A, 
   and stop if and when you find v. */

This specification describes a process the computer can follow to determine whether 
v is in A. But it is far better to write the specification as something like:

/* Determine whether v is in A. */

which, although not great, at least says what you want to know, and not how to find 
out. 

Why is this approach better? You might reason: I’m going to have to write code 
eventually, so why not write a process-oriented description of it in the comment, and 
be a step ahead? But consider the wider context in which this specification arose: The 
client of the specification doesn’t care a whit how you go about making the deter-
mination; it wants to know whether v is in A. Don’t tell the client how you will go 
about the task; that’s your problem. Of course, you are also the client, and take turns 
considering each perspective.

Writing a specification before rushing headlong into an implementation gives 
you a chance to ruminate on what it is that you really want. Do you want to know 
whether v is in A, or do you need to know how many times v occurs in A? Would 
it be helpful to know exactly where in the array v occurs? In that case, do you want 
the location of the left-most occurrence, the right-most occurrence, or doesn’t it 
matter. If you will provide the location of v in A, what if it’s absent? How then will 
you convey that fact to the rest of your program? Asking such questions is akin to a 
requirements elicitation.

Alternation between first specifying and then implementing is a salutary rhythm 
that supports the recommendation:

☞ Code with deliberation. Be mindful.

Even the most experienced coders are sometimes in a bit of a fog as they grope their 
way toward a solution. Early mindfulness will save you time in the long run, and 
writing the specification is a good place to start.

A specification provides a forgiving framework in which to sharpen written expres-
sion of your ideas. The familiar setting of English, rather than the temperamental 
setting of code, lets you:

☞ Repeatedly improve comments by relentless copy editing.

You are presumably more comfortable in English than in your programming lan-
guage. Perfecting the specification in a natural language allows you to focus, and 
avoid distractions.24

As you work on the specification, one touchstone is human readability and com-
prehensibility, and not arcane syntax and other rules of your programming language. 
Which human? You, for starters. It is helpful to have a conversation with yourself 
while writing the comment, as your thoughts clarify. Second, you should assume that 
others will read your code; comments provide the only explicit way in code to record 
your intent, and your readers will appreciate a record of your thinking.25 And finally, 

24. However, be on the lookout for ambiguities that can arise in English, and are one of its 
shortcomings.
25. We have emphasized the distinction between What? (the specification), and How? (the 



42 · Specifications and Implementations

you again. While writing code, you are immersed in it, and your ideas are readily at 
hand. But step away, and return a few days later, and your code will “look like Greek” 
to you. You will no longer remember your own rationale, and you will appreciate 
having left behind a record of your intent—for yourself.

A specification articulates what a piece of code provides to the rest of the program. 
It is a contract (double line) between the implementation (gray), and the rest of the 
program (green). It says, in effect, “My implementation will provide you with such 
and such so that you can do whatever is necessary to get the rest of the program to 
work”. But a specification is not a blanket promise. The contract has a proviso: “My 
promise is contingent on the rest of the program providing me with this and that, 
which is what I need to do my thing”.

Specifications introduce modularity in code. The interface (double line) subdivides 
a program into two parts: a surrounding context (green), and an implementation 
(gray). Modularity in code is essential. It is a fundamental notion that allows cod-
ers to

☞ Control complexity.

It works all scales: Between thousand-line modules, and within one-page methods. 
Today’s toy exercise is tomorrow’s critical infrastructure on which someone’s life, or 
some organization’s well-being, will depend. Writing specifications from the get-go 
prepares for that inevitable mission creep. 

A specification is at once both liberating (the implementation can be any code 
that delivers on the contract), and constraining (the implementation must deliver 
what the contract promises). Specifications enhance code pliability, and code com-
prehensibility.

Pliability derives from the specification’s limited domain of discourse: 
Implementation details that are not described in the specification are off limits to 
the rest of the program. This principle, known as information hiding, lubricates the 
code, and allows the implementation to change without affecting the surrounding 
program. Note, however, that no programming-language feature prevents access to 
the implementation details; rather, you must voluntarily enforce information hiding 
to preserve your code’s pliability.26

The specification’s restricted focus also promotes comprehensibility: To under-
stand the code, a client only needs to absorb what the specification says, and can 
ignore what it doesn’t say.

Once you adopt the mindset that a specification is a contract, you realize that 
text like:

/* Determine whether v is in A. */

is hopelessly vague: What exactly is it that will be determined, and under what cir-
cumstances? And it is with such concerns in mind that a specification ends up as 
the more precise: 

implementation). One might argue that Why? (the intent) is a third and distinct aspect deserv-
ing separate memorialization in code. However, we will let What? stand in for Why? rather 
than invent a new kind of comment or comment convention. In effect, What? explains why 
you wrote the code you did.
26. The programming language has support for information-hiding at the level of methods 
and classes. The convention whereby fine-grained specifications are treated as abstraction bar-
riers between statements adopts the client-server encapsulation model of methods and classes.

Program

/* Specification. */

Implementation



Statement Specifications · 43

/* Given array A[0..n-1], n≥0, and value v, let k be smallest nonnegative
   integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A. */

Notice how this specification addresses and answers all the open questions we pre-
viously had with the vague specification.

Although the more precise specification is rather detailed, it still harbors subtle, 
unstated and understated assumptions:

• The type of array elements is left unsaid. Absent such a mention, the contract 
does not restrict the type of array elements. 

• On the other hand, the specification mentions A[k]==v, and thus implies 
that (this kind of) equality must be defined for the types of v and array ele-
ments of A.

• The bound n≥0 allows n to equal 0. Thus, the contract subtly requires the imple-
mentation to work in the degenerate case of an array of no variables.

The implementation must work correctly whenever the specification occurs in a con-
text in which A, n, and v exist and satisfy the requirements.

One can legitimately ask whether very precise specifications are comprehensible. 
Detail, even if essential, can impact understandability. With this in mind, it is helpful 
to allow for a modicum of informal text to set the stage:

☞ Consider including a brief descriptive prefix in a statement-comment.

This could lead us to the following specification:

/* Find v in A[0..n-1]. Given array A[0..n-1], n≥0, and value v, let k be
   the smallest nonnegative integer s.t. A[k]==v, or let k==n if there are no
   occurrences of v in A. */

The specification prefix provides helpful context, but is insufficiently precise by 
itself.

Additional implementation notes that annotate statements in an implementation 
can also be helpful. These are inward-facing documentation that is not meant for 
the specification’s client. We illustrate such annotations in a refinement of our sam-
ple specification, albeit one might hope that such clarifying comments would not 
be needed. They are explanatory, and are more of the how than the what variety:

/* Find v in A[0..n-1]. Given array A[0..n-1], n≥0, and value v, let k be
   smallest nonnegative integer s.t. A[k]==v, or let k==n if there are no
   occurrences of v in A. */
   int k = 0;          // Start k at the left end of array A.
   while ( k<n &&      // Stop as soon as k runs off the right end of A, or
           A[k]!=v )   //    as soon as A[k]==v.
      k++;             // Step one place to the right.

Our guidelines aim for the advantages of a blend of both precision and informality.
Finally, observe that a specification can be totally redundant and counterproduc-

tive, e.g., the following two lines say exactly the same thing:

/* Declare int variable temp, and initialize it to x. */
   int temp = x;

The precept that rules out such wasteful nonsense is:



44 · Specifications and Implementations

☞ Omit specifications whose implementations are at least as brief and 
clear as the specification itself. 

Of course, your reading literacy for code will influence whether you consider any 
given specification duplicative.

States and Effects
The input-output specification

/* Input integer n, and output n*n. */

defines the behavior of a program in terms of its external input data and its external 
output data. In the specification, “input” is the verb meaning “read external input 
data”, and “output” is the verb meaning “write the value to external output data”. 

The term “I/O spec” is also used more generally to define required behavior of a 
code fragment with respect to certain program variables. For example, in the spec-
ification:

/* Given array A[0..n-1], n≥0, and value v, let k be smallest nonnegative
   integer s.t. A[k]==v, or let k==n if there are no occurrences of v in A. */

the “inputs” are the values in variables A[0..n-1], n, and v, and the “output” is 
the value in variable k. 

Similarly, in the specification

/* Swap x and y. */

the “inputs” are the values in variables x and y beforehand, and the “outputs” are the 
values in variables x and y afterwards. 

In general, a specification defines outputs in terms of inputs, be they external 
inputs and outputs, or variables of the program.

We frequently write specifications using the precondition-postcondition pattern:

/* Given precondition, establish postcondition. */

where precondition is what can be assumed, and postcondition is what must be accom-
plished. A variable whose value is used in the precondition is an input, and a variable 
whose value must (or can) be modified to establish the postcondition is an output.

For example, in

/* Given x≥0, let y be the square root of x. */

x is an input (variable) and y is an output (variable). The value of input variable x is 
also used in the postcondition to define how y must be changed.

When a variable is both an input and output, it is important to distinguish between 
the value in the variable beforehand, and the value afterwards. For example, were 
we to write: 

/* Swap x and y. */



Statement Specifications · 45

in the precondition-postcondition form, it might read:

/* Given x==X and y==Y, establish x==Y and y==X. */

where we have introduced the local pronouns “X” and “Y” to refer to the values in x 
and y beforehand.

The values of a program’s variables, and the status of its external input and output 
data streams, change as the program executes. In fact, each execution of a program 
statement effects such a change, and that can be said to be its purpose. The values 
of variables, and the status of the external input and output streams, are collectively 
part of the program’s execution state, or state for short, and a change in state is known 
as an effect.

The set of states about which a specification says anything is proscribed by its 
precondition. The specification says nothing about what may or must happen if the 
code is executed in any other state. Behavior in such cases is undefined, and can be 
anything.

For example, the specification:

/* Given x≥0, let y be the square root of x. */

says nothing about what must happen if x is negative. It only says: Provided the state 
beforehand is as described, then the state afterwards must be as described. The imple-
mentation may apply to other states, but that would be serendipitous because it is 
only required to work for states that are characterized by the precondition. Thus, 

/* Given x≥0, let y be the square root of x. */
   y = Math.sqrt( Math.abs( x ) );

happens to execute without error for any possible x. But such self-protection is totally 
unnecessary because the precondition effectively says: Don’t worry about the case 
of negative x. In fact, silently accepting unexpected values can be counterproductive 
because the practice may delay the discovery of program errors.27

Strictly speaking, it is not an error for a program to reach a specification in a state 
that does not satisfy the specification’s precondition—it is just rare and undesirable 
because programs are intended to do something specific and not arbitrary.

We aim for specifications that are both precise and complete, but in practice there 
are practical limits on how much detail to include in a specification. Accordingly, we 
adopt conventions that govern what is taken for granted, and therefore can be omit-
ted from explicit mention in a specification. These include:

• Input variable declarations and initializations. All input variables have been 
declared, and contain values.28

• Output variable declarations. All output variables have either been declared, or 
are to be declared afresh.

• No declaration conflicts. Fresh variable declarations will not interfere with 
already-existing variables with the same name.

• Memory sufficiency. The computer memory has space for any new variables 
required.

27. See the further discussion on this point in section Assertions (p. 49).
28 . In the language defined in Chapter 2, if a variable is not otherwise initialized by an explicit 
expression, it is initialized with the default value of the variable’s type. Nonetheless, because 
in some languages, e.g., C/C++, declared variables are not necessarily initialized with specific 
values, the text will allow for the possibility that a variable is uninitialized.



46 · Specifications and Implementations

• I/O effect. If input is required, the input-cursor will be advanced beyond what-
ever is input.

• No side effects. Unmentioned preexisting variables must not be changed, and no 
input or output operations occur other than what is mentioned.

• Numerical representations. Numerical input and output data are base-10 numer-
als, possibly in scientific notation, optionally signed.

• Numerical magnitudes. Numerical input data fit in whatever type of program 
variables the program chooses to use for them.

• No arithmetic overflows. Either no overflows occur, or their effects are consid-
ered benign.

• Termination. Execution completes unless an unending process is explicitly 
specified.

• Time sufficiency. Execution is not time constrained unless a performance guar-
antee is explicitly specified.

• Defensive programming optional. It is not necessary to detect badly-formed input 
data; the program can fail gracelessly when given such inputs unless detection 
of bad input is explicitly specified.

• Syntactic adequacy. The implementation must have appropriate syntax for the 
context in which it occurs. For example, in a setting that requires a single state-
ment, the implementation will be a single statement.

Thus, for example, the implementation we have written in:

/* Input integer n, and output n*n. */
   int n=in.nextInt(); System.out.println( n*n );

is acceptable even though:
• The magnitude of the input could exceed the square root of the largest integer 

that can be represented in 32 bits, in which case the computation of n*n would 
cause an arithmetic overflow.

• The input could be text that is not a base-10 numeral, in which case nextInt() 
will fail.

• The code fragment could be executed in a state in which there is no room left 
in the computer memory for even one more variable, e.g., n, in which case the 
program will stop running with a message about being “Out of memory”.

• The given implementation will not be acceptable in a context where only a 
single statement is allowed. However, it could be fixed by writing the imple-
mentation as a block:

if ( condition ) 
   /* Input integer n, and output n*n. */
      { int n=in.nextInt(); System.out.println( n*n ); }

Many real-world programs are required to account for exceptional cases such as 
those that are assumed by convention to not arise. These requirements are so per-
vasive that they are usually described in an overarching document rather than in 
each and every specification. We typically ignore such considerations in this book, 
and assume they are not at issue. We note, however, that “exceptions are the rule”, 
and much of the difficulty of writing good code involves proper handling of excep-
tional cases.



Statement Specifications · 47

Conditions and Sets of States
Interrupt a program’s execution, and inspect the contents of each of its n variables. 
The n values you find in the snapshot can be thought of as the coordinates of a point 
in an n-dimensional space, where there is one dimension for each variable. We have 
called such a point a state of the program’s execution, and we call the set of all such 
states that may arise the program’s state space. 

A program’s state space differs in a number of ways from the Euclidean space one 
is accustomed to in mathematics or physics. For one thing, the values contained in 
the numerical variables of a digital computer are discrete, not continuous. Also, some 
variables have non-numerical values, like characters, strings, and Booleans. In addi-
tion to variables, the status of the input and output streams is also relevant, so add 
two more dimensions for those aspects of the state. Furthermore, variables come 
and go during execution, so the number of dimensions is dynamic, and changes 
over the course of a program’s execution. Finally, the location in the program of 
the next statement to be executed is also part of the state. Notwithstanding these 
distinctions, thinking of the snapshot as a point in a higher-dimensional space is a 
compelling abstraction. 

Programs execute by transitioning in the state space from state to state.
Armed with the notions of state and state space, we can restate the meaning of 

the specification:

/* Given precondition, establish postcondition. */

more precisely. It means: 

/* Provided the program is in a state that is described by the precondition,
   transition to a state that is described by the postcondition. */

which can be depicted by the Venn diagram to the right.
This begs the question: How are states described? Before addressing this question, 

let’s consider two specifications for which no obvious preconditions are at play. 
The first example has no precondition whatsoever, and thus its implementation 

must work correctly in every conceivable state of the state space:

/* Output “Hello World.” */

The postcondition requires that the text “Hello World.” be appended to the output, 
and the implicit “no side effects” convention requires that no variables be changed. 
This refinement does the trick:

/* Output “Hello World.” */
   System.out.println( "Hello World." );

The second sample specification is:

/* Swap x and y. */

Like the first example, this also appears to have no precondition, but that is not quite 
true. It has an unstated, implicit precondition: Variables x and y must exist, and must 
have been assigned values. The implementation of this specification is not required to 

state and state space

state transition

precondition to postcondition



48 · Specifications and Implementations

do anything meaningful when it occurs in a context where there are no such variables; 
it is not even required to compile. Nor is it required to do anything meaningful if val-
ues have not been assigned to both x and y. Thus, the swap specification is really:

/* Given that variables x and y have been declared and have assigned values,
   swap x and y. */

This can be refined either by the standard implementation:

/* Swap x and y. */
   int temp = x;
   x = y;
   y = temp;

or by this alternative implementation:

/* Swap x and y. */
   x = x+y;
   y = x-y;
   x = x-y;

The two refinements are equivalent, and are therefore both technically correct. They 
are equivalent in the sense that their net effect is the same for all possible values of 
x and y.29

Returning to the original question, we ask: How does a precondition (or post-
condition) describe a set of states? One answer is that in a specification, you are free 
to use the descriptive power of English to define the set; we have been doing so all 
along. A second answer is that you can use the descriptive power of your program-
ming language’s Boolean expressions, i.e., conditions. 

You are already familiar with the notion of a condition, e.g., in if-statements, 
while-statements, and for-statements. For example, in the code:

/* Set y to the square root of x if x is not negative, and 0 otherwise. */
   if ( x>=0 ) y = Math.sqrt(x); else y = 0;

the condition x>=0 is evaluated during program execution, and determines the next 
statement to be executed depending on whether it evaluates to true or false. 

In contrast, in a specification, the same condition is not code; rather, it defines a 
set of states, i.e., the set of states for which the Boolean expression is true. In the 
specification:

/* Given x≥0, let y be the square root of x. */

the condition x≥0 is the precondition, i.e., it is a definition of the set of states for which 

29. Notwithstanding their equivalence, the second implementation offends as “too cute 
by a half ”, and should be avoided. You can readily understand the standard code for swap, 
whereas you need to study the second implementation to be convinced that is also correct. 
Equivalence of the two implementations follows from arithmetic properties of infinite-preci-
sion integers (if we ignore the possibility of arithmetic overflow), or from arithmetic properties 
of two’s-complement, finite-precision integers (if we don’t ignore the possibility of arithme-
tic overflow). This property is not obvious at first glance. It is a curiosity that is not worth the 
bother. Precept: Avoid obscurity.



Statement Specifications · 49

the implementation is required to establish the postcondition. That set consists of all 
states for which x is greater than or equal to 0, and no others. Specifically, all states 
for which x is less than 0 are eliminated from consideration, and can be ignored. The 
values of all the other variables are unconstrained, i.e., they are free to be anything.

In the given specification, “let y be the square root of x” is the postcondition, 
i.e., a description of the set of states one of which the program is required to reach. 
A Boolean expression that describes that set is “y*y==x”, which constrains the x 
and y components of the state, and leaves all other components unconstrained.30 
Notice that the specification is nondeterministic, i.e., it admits both of the following 
two implementations:

/* Given x≥0, let y be the square root of x. */
   y = Math.sqrt(x);

and

/* Given x≥0, let y be the square root of x. */
   y = -Math.sqrt(x);

A good rule of thumb is:

☞ Don’t make postconditions any more specific than needed.

For example, writing the postcondition as the Boolean expression “y==Math.sqrt(x)” 
would exclude the second implementation. If there is no reason to exclude an imple-
mentation, don’t.

Consider an arbitrary condition, say, one that defines the blob-like set of states 
depicted. Each point in the region of the state space defined by the condition is said 
to satisfy the condition, e.g., state A. Conversely, each point outside the region is said 
to not satisfy the condition, e.g., state B.

The condition can be weakened to define a superset of the blob’s states, e.g., all 
those inside the red oval, or strengthened to define a subset of the blob’s states, e.g., 
only those inside the green oval. A weakened condition is weaker in the sense that it 
is less constraining. Similarly, a strengthened condition is stronger in the sense that it 
is more constraining.

To be specific, suppose the blob is defined by the condition “point in NYC”. Then 
the red oval might be the weakened condition “point in NY state”, and the green oval 
might be the strengthened condition “point in Manhattan”. We return to this exam-
ple in the next chapter.31

Assertions
Methods frequently protect themselves from misuse by their clients. For example, 
because the square root of a negative number is not defined, Math.sqrt aborts pro-
gram execution if it is ever invoked with a negative argument. The rationale is that it 

30. The requirement that this action be done without changing x is implicit in the locution 
“let y be”, i.e., in the absence of an indication that x can be changed, it can’t.
31. Strangers to the United States need to know that NYC is New York City, which is situated 
in the state of New York. NYC consists of five boroughs, one of which is Manhattan. Note the 
two uses of “state”: One for points in the state space, and the other for one of the fifty regions 
that are united in the USA.

condition

B

A

weakened condition

strengthened condition



50 · Specifications and Implementations

is far better for the program to stop and warn than it would be for it to exhibit unde-
fined behavior, e.g., return an arbitrary value.

This example illustrates the benefit:

/* Compute x≥0 such that blah blah. */
   ...
/* Given x≥0, let y be the square root of x. */
   y = Math.sqrt(x);
/* Whatever. */
   ...

When we wrote “blah blah”, we fully believed that it would never produce a negative 
x, but we may have erred. Were it not for Math.sqrt aborting execution when x is 
negative, we might have executed Whatever with unpredictable consequences.

Now consider this analogous code: 

/* Compute x≥0 such that blah blah. */
   ...
/* Given x≥0, do Whatever. */
   ...

It has no invocation of Math.sqrt to protect it, but is just as vulnerable to the mis-
take in “blah blah”. Specifically, Whatever might do nonsensical computations based 
on the false assumption that x could never be negative, and eventually the program 
crashes or produces garbage output. You would then have to understand why, and 
after a laborious debugging process, would discover that “blah blah” could (and did) 
produce a negative x, perhaps way earlier in the program’s execution. 

You would have saved yourself a lot of grief if you had written:

/* Compute x≥0 such that blah blah. */
   ...
/* Given x≥0, do Whatever. */
   assert x>=0: "blah blah computed a negative x";
   ...

where the assert-statement prints the given error message and stops program exe-
cution if the condition x>=0 is not true. Alternatively, rather than placing the assert 
ahead of Whatever (to guarantee its precondition) you could have placed it at the 
end of “blah blah” (to guarantee its postcondition):

/* Compute x≥0 such that blah blah. */
   ...
   assert x>=0: "blah blah computed a negative x";
/* Given x≥0, do Whatever. */
   ...

It is clearly overkill to begin or end the implementation of every specification with 
an explicit assert. But when programs are complicated, and there is a significant risk 
of error, judicious placement of assert-statements can pay off. When the condition is 
complicated, it is common to write a boolean method to do the check, and invoke 
that method from the assert.32

32. If your programming language doesn’t support assert statements, you can write the 



Declaration Specifications · 51

Declaration Specifications
We have focused on specifying how code effects the values of variables; thus, we 
adopted a code-centric perspective. We now switch orientation, and embrace a 
data-centric perspective. Specifically, we ask: What values do the variables contain 
during program execution, and what do those values represent? The answers are 
articulated in the variables’ declarations and their specifications.

The specification of a single variable has the form:

Declaration-of-one-variable // Specification.

and for a group of variables has the form:

/* Specification. */
   Declarations-of-related-variables

A declaration associates a type with a variable, which provides an initial constraint 
on the set of values the variable can contain. Such a restriction is helpful, but it is a 
very weak form of specification.33

A full declaration specification provides what is known as a representation invariant, 
a constraint on the permissible values of the variable(s) according to their purpose 
in the program. The specification states that at all times during the execution of the 
program (other than during brief moments before initialization, and prior to com-
pletion of updating) the variable(s) have the properties and relationships ascribed 
to them by the representation invariant.

For a single variable that stands on its own, we typically write the representation 
invariant to the right of the declaration. The more precise you are about a variable’s 
representation invariant, the easier it will be to write code that maintains and uses it. 
In effect, the representation invariant becomes a glossary entry that states the vari-
able’s precise meaning.

For example, suppose each value in the external input data is first “read” and is 
subsequently “processed”. Then this specification ascribes one meaning to variable 
count:

int count; // # of input values read so far.

similar code:
if ( !(x>=0) ) { 
   System.out.println("blah blah computed a negative x"); 
   System.exit(1);
   }

where calling System.exit with a non-zero argument terminates execution with an error code. 
The advantages of assert statements include:

• They are succinct and distinctive documentation of required conditions.
• They pinpoint their location when they fail to hold.
• Automated software analysis tools can use them as a point of departure for reasoning 

about program correctness.
• Their runtime overhead can be eliminated in one fell swoop with a compiler directive to 

ignore them if you choose to live dangerously in “production mode”.
33. A major difference between Java and C/C++ (on the one hand) and Python and JavaScript 
(on the other) concerns typed variables. Python and JavaScript variables are untyped, and can 
be assigned values of any type. Java and C/C++ variables can only be assigned values whose 
type is compatible with the variable’s declared type. 



52 · Specifications and Implementations

while this specification ascribes a different meaning to variable count:

int count; // # of input values processed so far.

The distinction may be important (during the period between inputting the value 
and processing it), and you will benefit from having stated the representation invari-
ant clearly and explicitly. 

When an action by the program makes a variable’s representation invariant no 
longer hold, the variable should be updated as soon as practical. For example, say 
count is the number of values processed so far. Then it should be incremented imme-
diately after processing in order to minimize the period during which its invariant 
doesn’t hold.

A data structure is a group of variables that work together in a coordinated fash-
ion. We typically write a data structure’s representation invariant in a comment that 
introduces the declarations of the variables. Additional comments on individual 
declarations can be used to further clarify the invariant.

For example, suppose we wish to specify how the array A, and variables size and 
maxSize work together to store a list of at most maxSize integers, where size is 
the current number of items in the list. We write:

/* A[0..size-1] are the current items in A[0..maxSize-1], 0≤size≤maxSize. */
   int A[];      // receptacle for items in a list.
   int size;     // current # of elements in list, 0≤size≤maxSize.
   int maxSize;  // maximum # of elements storable in the list.

to specify the representation invariant of the list. 
We mentioned earlier that what a specification doesn’t say is (in a sense) as import-

ant as what it does say. In this regard, note how the representation invariant above 
does not in any way constrain the values in A[size..maxSize-1]. Specifically, the 
implementation is free to use that region however it wishes, e.g., it can leave detritus 
there when the number of elements in the list is reduced.34

Updating a data structure often requires multiple steps, and until those steps have 
been completed, the collection of variables that make up the structure are in a bit 
of disarray. During that time, the data structure’s representation invariant does not 
hold; it should be restored in its entirety as soon as possible.

With the exception of the brief periods before it can be fully restored, a represen-
tation invariant serves as a precondition for every statement in its scope—provided, 
of course, that we take care to maintain it as circumstances unfold.

Method Specifications
A method’s specification describes the effects (if any) and the return value (if any) 
of the method in terms of its parameters, and in terms of the (static) variables of the 
class in which the method is declared. It takes the form:

/* Specification. */
Method definition

The method’s specification is known as its header-comment. In contrast with the 

34. This data structure is discussed at length in Chapter 12 Collections, and again in 
Chapter 18 Classes and Objects.



Method Specifications · 53

implementation of a statement comment, we do not indent the method definition 
under its header-comment.35

 For example:

/* Return the larger of the values x and y. */
int max(int x, int y) { if ( x<y ) return y; else return x; }

The list of parameter types is implicitly part of the method’s specification, i.e., invo-
cation of max requires two arguments of type int.36

In contrast with max, which must work correctly for any two argument values of 
type int, some methods impose additional requirements on their argument values. 
For example, method find:

/* Given int array A[0..n-1] sorted in non-decreasing order, and int v, return
   an index where A[k]==v, or return n if v does not occur in A. */
int find( int A[], int n, int v) { ⟨body of find⟩ }

requires that in any invocation of find the first argument must be an array that is 
sorted in non-decreasing order, and the second argument must be an int that is no 
greater than the length of that array. These requirements are parts of the precondition 
that constrains input parameters A and n.

The specification of a method that depends on (or that modifies) a class variable 
should state so explicitly. For example:

class C { 
   static int v;       // Current input value.
   static int count;   // # of input values processed so far.
   ...
   /* Process the current input value v, and increment count. */
   static void process() {
      ⟨Code to process v.⟩
      count++;
      }
   }

Alternatively, you can implicitly rely on the variable’s representation invariant as part 
of the method specification’s precondition and postcondition., and omit mention of 
it, e.g., by leaving out the red phrase above.

 It is the client’s obligation to only invoke a method with input arguments that 
satisfy the preconditions of the method’s corresponding parameters. The method 
may choose to protect itself by asserting that the conditions hold, and thereby abort 
execution if they don’t. Alternatively, the method may choose to trust its clients, and 
let them suffer the consequences of misuse.

Methods with return type void do not return a value; rather, they are invoked 
for their side effects. For example, method sort:

/* Rearrange array A[0..n-1] to be in non-decreasing order. */
void sort( int A[], int n) { ⟨body of sort⟩ }

35. This layout convention saves horizontal space, and we choose to forgo explicit acknowl-
edgment of the hierarchical relation between a method’s header and its definition.
36. We assume here that there is only one definition of method max. Some programming lan-
guages, e.g., full Java, support multiple definitions of methods with a given name but different 
parameter types. This feature is known as method overloading.



54 · Specifications and Implementations

requires that when sort returns, the values in the first argument of the invocation 
(an int array) must have been rearranged to be in non-decreasing order. This require-
ment is the postcondition that constrains output parameter A.

We have seen that the implementation of a statement specification of the form:

/* Given precondition, establish postcondition. */

is required to establish the postcondition whenever it is executed in a state that 
satisfies the precondition. Similarly, the body of a method is required to establish 
the postcondition(s) of its output arguments (and/or return value) whenever it is 
invoked with input arguments that satisfy their preconditions.

Class Specifications
The specification of a class has the form

/* Specification. */
Class definition

As for methods, the class’s specification is known as its header-comment, and we do 
not indent the definition under the header-comment.

A class consists of its methods and declarations, each of which already has its own 
specification. It is pointless to repeat all of that in the class’s header comment, so we 
consider it to be incorporated “by reference”.37

Because class specifications can rely on the specifications of the class’s variables 
and methods for their technical aspects, they are often more descriptive and histor-
ical than the other forms of specification. For example:

/* Rational. A module for the manipulation of rationals, including operations
   for +, -, *, /, conversion to String, and equality.
   Author: Joe Blow. 
   Created: 12/25/2022. 
   Revision History: Converted to use unbounded integers, 12/25/2023. */
class Rational {
   ...
   }

37. We will learn later that methods and declarations can be private, which means that they 
are not part of the exported interface of the class. Thus, only the non-private methods and 
declarations are incorporated by reference into the class’s specification.



55

ChAPTER 4  
Stepwise Refinement

We have defined a refinement to be the implementation of a specification. Some refine-
ments consist entirely of code:

/* Swap x and y. */
   int temp = x;
   x = y;
   y = temp;

while other refinements consist entirely of further specifications:
/* Swap A[0..n-1] and B[0..n-1]. */
   /* Declare temp[0..n-1], and let temp[0..n-1] be A[0..n-1]. */
   /* Let A[0..n-1] be B[0..n-1]. */
   /* Let B[0..n-1] be temp[0..n-1]. */

In general, the refinement of a specification is a mixture of code and other specifi-
cations that must themselves be further refined in order to complete the program 
segment. 

The process of refining specifications until they have all been elaborated in code 
is known as Stepwise Refinement. It is an example of the general problem-solving 
technique called Divide and Conquer.

Divide and Conquer 
Solving a problem by dividing it into constituent parts, and then solving those sub-
parts, is known as Divide and Conquer. The technique is said to have been invented 
by Julius Caesar, who used it in warfare, and may have declared:

All Gaul is divided into three parts. To conquer Gaul:
• First, conquer the first part.
• Then, conquer the second part.
• Finally, conquer the third part.

Writing a computer program is a task that is amenable to Divide and Conquer. In a 
proclamation parallel to Caesar’s, we say:

To write a program:
• First, break it into subprograms.
• Then, write each subprogram separately.



56 · Stepwise Refinement

Divide and Conquer, when used as a methodology for programming, is called 
Stepwise Refinement. 

Stepwise Refinement is a top-down approach to programming. You begin at the 
top, which is an all-encompassing specification of what your program must do, and 
you work your way down to the minutest details of how it will do so:

☞ Program top-down, outside-in.

The sub-specifications defined by refinements on the way down form a hierarchy, 
like subsections in the outline of an essay.

Specification

Sub-Specification #1 Sub-Specification #2 Sub-Specification #3

Sub-Sub-Specification #2.1 Sub-Sub-Specification #2.2

Specification
Sub-Specification #1
Sub-Specification #2

Sub-Sub-Specification #2.1
Sub-Sub-Specification #2.2

Sub-Specification #3

You may view the refinement hierarchy as either a tree or an outline; it’s the same, 
regardless.

Stepwise Refinement can be viewed as a program for coding: To write a program 
P, you follow these instructions:

if ( P is simple to write ) Write it;
else {

Refine P into simpler subprograms;
Write each subprogram;
}

Understand that this is not a template for the code that you are writing. Rather, it is 
a rule for you to follow as you program, as if you were a computer, and it is the pro-
gram you are executing.

In the description of Stepwise Refinement, Refine means “divide into parts”. For 
our purposes, there are only five ways to do so:

Sequential steps
Do one thing after another.

Case analysis 
Do one thing or another.

Iteration
Do one thing repeatedly.

Recursion
Do something based on self-similarity.

Selection from a library of patterns
Do some complex pattern of the previous four kinds of
refinement, selected from a library of known techniques.

This limited pallet of possibilities allows you to ask at each stage of Stepwise 
Refinement the simple question: Which of the five choices do I make? We discuss 
the five types of refinement, and the requirements on their constituent subparts, in 
separate sections below.38

38. We omit discussion of a sixth possibility, parallel programming, which allows the addi-
tional form of refinement: 

Concurrency: Do multiple things simultaneously.



Sequential Refinement  · 57

Stepwise Refinement is recursive because it uses itself in its own definition: The 
way you “Write each subprogram” is to use the very Divide-and-Conquer method 
being described.

If you are new to recursion, you may worry that the process may never stop. The 
first two lines of the poem Siphonaptera by the 19th-century mathematician Augustus 
De Morgan suggest this possibility [9]:

Great fleas have little fleas upon their backs to bite ‘em,
And little fleas have lesser fleas, and so ad infinitum.
And the great fleas themselves, in turn, have greater fleas to go on;
While these again have greater still, and greater still, and so on. 

Unlike fleas, however, Stepwise Refinement terminates because we have been care-
ful to require that refinements get simpler and simpler, and thus the recursion stops 
at the so-called base case:

if ( P is simple to write ) Write it;

The base case in programming is a specification that you don’t have to think about 
because you instinctively know how to code it. Accordingly, provided that the sub-
problems into which you refine P in fact get simpler, you don’t have to worry about 
an infinite regress.39

When you refine a specification, you may sometimes deceive yourself into think-
ing that a proposed sub-specification will be simpler to code, only to discover that 
the opposite is true. Be alert to the possibility that you are inadvertently “digging 
yourself into a hole”, and be ready to stop digging.

You may occasionally have a considered reason to refine a specification into some-
thing that is decidedly more difficult to code. For example, you may care more about 
the efficiency of the program you are developing than your own efficiency in com-
pleting the programming task. The tradeoff between “quick and dirty” and “if it’s 
worth doing, it’s worth doing right” is yours to balance. Be aware that perfectionism 
risks a regress in the direction of piling greater fleas upon great fleas, ad infinitum.

Refining a program into subprograms must be done with care. Yes, “the whole is 
the sum of its parts”, but the parts have to fit together like pieces of a jigsaw puzzle. 
Each part offers tabs to other parts, which must have matching sockets. A challenge 
of dividing a program into subprograms is finding interlocking parts that fit together 
appropriately. Each form of refinement has its own rules for interconnecting its sub-
parts. 

Sequential Refinement 
A Sequential Refinement implements a specification P with a sequence of steps P1 
through Pn to be executed one after the other:

/* Specification P. */
   /* Specification P1. */
   /* Specification P2. */
   ...
   /* Specification Pn. */

39.  A cosmological version of Siphonaptera concerns what supports the Earth? The answer, 
a giant turtle, inevitably begs the questions: And what supports the turtle? Etc. The ultimate 
answer: It’s turtles all the way down [46].



58 · Stepwise Refinement

In general, each step Pk accomplishes something that enables the subsequent steps 
Pk+1,…,Pn to contribute to the implementation. Although we have written each step 
as a specification in a comment, each specification can be a code-level statement. 
Sequential Refinement is so natural that one almost doesn’t think of it as refinement. 
Nonetheless, it is the essence of Divide and Conquer, and the bedrock of Stepwise 
Refinement.

In the following examples, think of programs as “driving itineraries” or “plans” 
that describe the route of a trip, say, for a self-driving car. For each plan, we write a 
specification, and then consider ways to refine it.

Example 1
We wish to drive from LA to NYC, so our top-level specification is:

/* Drive from LA to NYC. */

If we think of our location as a point in a (geographical) state space, the desired plan 
is a program that will get us from (somewhere in) LA to (anywhere in) NYC:

LA NYC

We decide to use Sequential Refinement, and break the journey into two sub-trips:

/* Drive from LA to NYC. */
   /* Drive from LA to Chicago. */
   /* Drive from Chicago to NYC. */

In the state-space view, we see that the plan will accomplish its goal in two steps, and 
will take us through the intermediate city of Chicago:

LA Chicago NYC

If we think of the two sub-specifications as pieces of a jigsaw puzzle, then the first 
has a tab, get to Chicago, and the second has a matching socket, starting in Chicago. 
The two fit together and interlock. The first leg of the trip enables the second:

starting in LA

starting in Chicago get to NYC

get to Chicago

Once coupled, the two pieces form a compound piece that offers only a “starting 
in LA” socket, and a “get to NYC” tab. It is as if the Chicago socket and tab weren’t 
there; they are internal details of no importance to the user of the “Drive from LA 
to NYC” itinerary. The exposed LA socket and NYC tab of the compound piece are 
called its interface.



Sequential Refinement  · 59

Example 2
There is nothing magical about Chicago. We could have chosen St. Louis as the inter-
mediate city:

/* Drive from LA to NYC. */
   /* Drive from LA to St. Louis. */
   /* Drive from St. Louis to NYC. */

Different roads and scenery, but the same net effect: We get from LA to NYC. 
Repeating the jigsaw analogy, this compound piece has a different internal structure, 
but offers other pieces the identical external interface: A socket (“I can leave from 
LA”), and a tab (“I will arrive in NYC”).

Example 3
The following is an incorrect refinement:

/* Drive from LA to NYC. */
   /* Drive from LA to Chicago. */
   /* Drive from St. Louis to NYC. */

You can’t force the mismatched subparts together to achieve your goal. The accom-
plishment of the first step (getting to Chicago) is irrelevant to the requirement of 
the second step (being in St. Louis). This is a bug in your plan. Of course, you could 
create a correct three-part Sequential Refinement by interposing the journey: 

/* Drive from Chicago to St. Louis. */

between the two mismatched subparts.

Example 4
The efficiency of your plan depends on your choice of intermediate city. For exam-
ple, this route would be inefficient:

/* Drive from LA to NYC. */
   /* Drive from LA to Tokyo. */
   /* Drive from Tokyo to NYC. */

But even worse, it is not effective: You can’t drive from LA to Tokyo because there 
is a small ocean in the way. Just because you write a specification doesn't mean that 
it can be achieved.

Example 1, continued
Program execution, like an actual drive, will require reading the plan from top to 
bottom, and performing those steps, in turn. But Stepwise Refinement is a method 
for writing code, not for executing it. Accordingly, we can further refine the subparts 
in any order:



60 · Stepwise Refinement

/* Drive from LA to NYC. */
   /* Drive from LA to Chicago. */
   /* Drive from Chicago to NYC. */
      /* Drive from Chicago to Pittsburgh. */
      /* Drive from Pittsburgh to NYC. */

Programming can be like painting, where you are free to fill in the details of a sketch 
in any order:

☞ Refine specifications and placeholders in an order that makes sense 
for development, without regard to execution order.

Example 4, continued
If in the course of attempting a refinement you run into difficulty, you can backtrack, 
i.e., undo the refinement that led you to the problematic specification, and try another. 
Perhaps you only discover the Pacific Ocean when you go to refine:

/* Drive from LA to Tokyo. */

Then this is the time to undo the Sequential Refinement:

/* Drive from LA to NYC. */
   /* Drive from LA to Tokyo. */
   /* Drive from Tokyo to NYC. */

and find another:

☞ Don’t be wedded to code. Revise and rewrite when you discover a 
better way.

Hippocratic coding (introduced earlier) aimed to avoid this, but it happens. You’re 
only human.

Example 5
Consider refining the specification:

/* Drive from LA to NYC and buy a new car (in any order). */

Sequentiality is so intrinsic to natural language that the parenthetical is needed to 
avoid the implication that “and” means “and then”. Two distinct refinements come 
to mind:

/* Drive from LA to NYC and buy a new car (in any order). */
   /* Drive from LA to NYC. */
   /* Buy a new car. */

and



Sequential Refinement  · 61

/* Drive from LA to NYC and buy a new car (in any order). */
   /* Buy a new car. */
   /* Drive from LA to NYC. */

Yet another sequential decomposition would be to buy the car in Chicago. We can 
imagine the conceivable benefits of each order, but these are beyond the scope of 
what the specification requires. Its two requirements are independent, and each 
order is admissible. 

From the point of view of program states, there are two dimensions, “location 
of car” and “age of car”, and the specification is oblivious to any possible interde-
pendence. Viewed as such, the specification and its (first) refinement are really:

/* Get from ⟨LA,OLD⟩ to ⟨NYC,NEW ⟩. */
   /* Get from ⟨LA,OLD⟩ to ⟨NYC,OLD⟩. */
   /* Get from ⟨NYC,OLD⟩ to ⟨NYC,NEW⟩. */

Note that in reading the informal step:

/* Drive from LA to NYC. */

you assumed implicitly that the car’s status didn’t change during that leg of the jour-
ney, as per our implicit no-side-effects rule that unmentioned state components remain 
unchanged (p. 46), whereas a full description of the step as a mapping in a two-di-
mensional state space makes this requirement explicit:

/* Get from ⟨LA,OLD⟩ to ⟨NYC,OLD⟩. */

as does the Sequential Refinement of this step that passes through Chicago:

/* Get from ⟨LA,OLD⟩ to ⟨NYC,NEW⟩. */
   /* Get from ⟨LA,OLD⟩ to ⟨NYC,OLD⟩. */
      /* Get from ⟨LA,OLD⟩ to ⟨Chicago,OLD⟩. */
      /* Get from ⟨Chicago,OLD⟩ to ⟨NYC,OLD⟩. */
   /* Get from ⟨NYC,OLD⟩ to ⟨NYC,NEW⟩. */

Generalization
Our sample itineraries have set the stage for defining the general principle of 
Sequential Refinement. We will generalize in several ways. First, we move beyond 
geographic locations to arbitrary conditions. Second, we loosen the ways in which 
the parts of a Sequential Refinement couple.

From Locations to Arbitrary Conditions
First, let’s generalize specifications like:

/* Drive from LA to NYC. */

 to: 

/* Get from PRE to POST. */



62 · Stepwise Refinement

where PRE and POST could be any cities. We have also switched from “drive” to “get” 
to allow for different means of conveyance.

But why restrict PRE and POST to cities, and why restrict “get” to modes of trans-
portation? Why not allow them to be anything:

/* Get from RAGS to RICHES. */
/* Get from MISERY to HAPPINESS. */
/* Get from THEOREM to PROOF. */
/* Get from x≥0 to y is a number that when squared equals x. */

In each case, we start in a before-state, and wish to arrive at an after-state.
Thus, PRE and POST are arbitrary preconditions and postconditions, and the 

specification:

/* Get from PRE to POST. */

is shorthand for:

/* Given that the program is in a state that satisfies condition PRE,
   get to a state that satisfies condition POST. */

As with driving, the simplest form of Sequential Refinement is a two-part divi-
sion, with a specific midpoint MID:

/* Get from PRE to POST. */
   /* Get from PRE to MID. */
   /* Get from MID to POST. */

This pattern is a direct articulation of the general principle of Divide and Conquer.

Loosening the Coupling
Returning to our trip from LA to NYC, we consider various alternatives to direct 
application of the above rule. First, consider this refinement:

/* Get from LA to NYC. */
   /* Get from LA to Chicago. */
   /* Get from Illinois to NYC. */

Because Chicago is in the (USA) state of Illinois, getting to Chicago automatically 
gets you to Illinois, so this decomposition is valid. But the match between the post-
condition of the first leg of the journey and the precondition of the second leg is 
inexact: Chicago and Illinois.

In the analogy with jigsaw-puzzle pieces, it is as if the socket of the right piece 
were reamed out to accommodate other kinds of tabs, not only Chicago:

starting in LA

starting in Illinois get to NYC

get to Chicago



Sequential Refinement  · 63

Technically, we have weakened the piece’s precondition, from “starting in Chicago” 
to “starting in Illinois”.

The situation is similar for the first leg of the journey. For example, another valid 
refinement would be:

/* Get from LA to NYC. */
   /* Get from California to Chicago. */
   /* Get from Chicago to NYC. */

If we know how to get from (anywhere in) California to Chicago, we can get from 
LA to Chicago.

Again, making the connection with jigsaw-puzzle pieces, it is as if the socket of 
the left piece were reamed out to admit tabs bigger than “get to LA”:

starting in California

starting in Chicago get to NYC

get to Chicago

The precondition of the left piece has been weakened.
As we have illustrated, we can use a solution method that is more general than is 

strictly necessary. Similarly, we can use a method of solution that achieves a more 
specific goal than is strictly required. For example, consider this refinement:

/* Get from LA to NYC. */
   /* Get from LA to Chicago. */
   /* Get from Chicago to Manhattan. */

We only need to get to NYC, so a plan that gets us to a particular borough of NYC 
will do. Rather than reaming out a socket, we shave down a tab:

starting in LA

starting in Chicago get to Manhattan

get to Chicago

The “get to Manhattan” tab has been trimmed compared to the original “get to NYC” 
tab, but still fits in any “starting in NYC” socket. Technically, we have strengthened 
the piece’s postcondition.

Putting all three loosenings together, we obtain the Sequential Refinement:

/* Get from LA to NYC. */
   /* Get from California to Chicago. */
   /* Get from Illinois to Manhattan. */

In the state-space view, we see that this plan will accomplish its goal in two steps:

LA

California

Chicago

Illinois

Manhattan

NYC



64 · Stepwise Refinement

The first step will transition us from anywhere in California (which includes LA) 
to somewhere in Chicago, and the second step will transition us from anywhere 
in Illinois (which includes Chicago) to somewhere in Manhattan (which is within 
NYC).

Although it is self-evident that such a refinement is valid, you may wonder why 
from the point of view of program development we would call for a more general 
plan than is needed? At first glance, this refinement is counterintuitive because it 
would seem to require more ingenuity to get from an arbitrary location in Illinois 
to NYC than only from Chicago. Aren’t we making life more difficult for ourselves? 
Similarly, you may wonder why we would impose on ourselves the additional burden 
of getting to Manhattan, a specific borough of NYC, when any borough would do? 

The answer is: Methods that are more general-purpose than needed, and methods 
that achieve more specific goals than needed, are frequently available. Weakening 
preconditions and strengthening postconditions creates additional valid ways for 
parts to couple, and anticipates use of such methods. The next section illustrates 
that this situation occurs frequently, and is standard practice. In fact, doing other-
wise is simply not feasible.

Summarizing, the general pattern of a two-part Sequential Refinement is:

/* Get from PRE to POST. */
   /* Get from A1 to B1. */
   /* Get from A2 to B2. */

where satisfying PRE automatically satisfies A1, satisfying B1 automatically satisfies 
A2, and satisfying B2 automatically satisfies POST.

The general pattern of an n-way Sequential Refinement of specification P is:

/* Specification P: Get from PRE to POST. */
   /* Get from A1 to B1. */
   /* Get from A2 to B2. */
   ...
   /* Get from An to Bn. */

where if PRE is satisfied then A1 is automatically satisfied, if Bk is satisfied then Ak+1 
is automatically satisfied (for 1≤k<n), and if Bn is satisfied then POST is automati-
cally satisfied.

Weakening and Strengthening in Practice
The previous section focused on the internal boundaries of a Sequential Refinement. 
An alternative and equivalent viewpoint takes the perspective of an individual spec-
ification:

/* Get from PRE to POST. */

 in the context of the surrounding program:

Program
/* Specification. */



Sequential Refinement  · 65

We observe that this specification can be implemented by any code that satisfies the 
specification:

/* Get from PRE′ to POST′. */

where PRE′ is any weakening of PRE, and POST′ is any strengthening of POST. Said 
set theoretically, the set of states assumed to be possible by PRE′ can be any superset 
of the set of states that could have been assumed by PRE. Similarly, the set of states 
required to be reached by POST′ can be any subset of the set of states that would 
have been required by POST. 

We adopt this viewpoint in the following examples, and consider what weaken-
ing of the precondition (if any) and strengthening of the postcondition (if any) have 
been adopted by each implementation.

Example 1. In some settings, the given precondition is absolutely essential, and 
cannot be weakened:

/* Get from x≥0 to y is a number that when squared equals x. */
   y = Math.sqrt(x);

The implementation must accept the constraint of the given precondition because 
the concept of (real) square root is not defined without it, i.e., any weakening of the 
precondition would result in a specification for which there is no implementation. 
On the other hand, the implementation choses to compute the positive root of x 
and ignore the negative root. In effect, it strengthens the postcondition to produce 
only positive roots. The specification did not say which root was required, so we 
were free to select one.

Example 2. In some settings, the given precondition is useful, although it is 
not essential:

/* Get from x≥0 to y is |x|. */
   y = x;

Given that x is not negative, we can just set y to x, and know that y thereby becomes 
the absolute value of x. Any weakening of the precondition x≥0 would be counterpro-
ductive because it would require the implementation to use a more general method 
of computing the absolute value of x.

Example 3. In some settings, the given precondition is completely superflu-
ous:

/* Get from x≥0 to y is x squared. */
   y = x*x;

That x is nonnegative is irrelevant to our ability to compute its square using mul-
tiplication. In fact, we are hard pressed to think of a squaring method that relies 
on x’s non-negativity.40 A precondition is made available to a specification by the 
context in which it occurs, but there is no requirement on the implementation that 
it must work only in such states. The implementation of x squared as x*x effec-
tively weakens the precondition x≥0 to one that only requires variable x to exist 
and contain a value.

40. Perhaps, adding x to itself x times could be said to rely on x being nonnegative.



66 · Stepwise Refinement

Example 4. In some settings, it is conceivable that the given precondition might 
be useful, but the norm is to ignore it:

/* Get from array A’s elements are unique to A’s elements are numerically
   ordered. */

Chapter 11 Sorting presents four algorithms for rearranging elements of an array into 
numerical order. Each algorithm allows for duplicate values in the array. In effect, use 
of any of those sorting methods weakens the precondition “A’s elements are unique” 
to “A’s elements are arbitrary”, and is indifferent to uniqueness.

Example 5. Recall this specification of the Integer Square Root problem from 
Chapter 1:

/* Given n≥0, output the integer part of the square root of n. */

Blind adherence to the Divide and Conquer pattern:

/* Get from PRE to POST. */
   /* Get from PRE to MID. */
   /* Get from MID to POST. */

would have led us to write:

/* Given n≥0, output the integer part of the square root of n. */ 
   /* Given n≥0, let r be the integer part of the square root of n≥0. */
   /* Given that r is the integer part of the square root of n≥0, output the
      integer part of the square root of n. */

but what we actually wrote was:

/* Given n≥0, output the integer part of the square root of n. */ 
   /* Given n≥0, let r be the integer part of the square root of n≥0. */
   System.out.println( r );

Let’s reflect carefully about this shortcut to understand exactly why it worked.
First, we omitted an explicit specification for the output step because the code 

itself sufficed. In doing so, we followed the recommendation to avoid writing super-
fluous specifications.

But more germane to the present discussion, we weakened its precondition, and 
used a general-purpose way to output r. Consider the output statement, in isola-
tion:

System.out.println( r );

and show it as a mapping between two regions of the state space:

domain range

What exactly are the domain and range of this mapping?
The domain is the set of all states in which variable r exists and has been assigned 

some value. The range is the set of all states in which the output component of state 
ends with a String representation of the r component of state, for every possible 
value of r. The domain includes, as a proper subset, the set of states in which r is the 



Sequential Refinement  · 67

integer part of the square root of n≥0. Call that set d. In choosing to implement the 
second step with the general-purpose output statement, we implicitly understood 
that it is permissible to weaken a step’s precondition, even though only states in d 
can arise in the given context.

Conjunctive Normal Form
Strengthening and weakening conditions are important aspects of program refine-
ment. We have discussed them in numerous equivalent ways, but have avoided 
reliance on formal logic. Instead, we have assumed that informal intuition will be 
adequate for reasoning about them.

The following small step toward formalization is easily grasped, yet provides a 
useful framework for thinking about weakening and strengthening.

A condition C is said to be in Conjunctive Normal Form when it is expressed as the 
conjunction of conjuncts C1, C2, ..., and Cn, i.e.,

C1 and C2 and ... and Cn

For example, the precondition “x≥0” can be thought of as the conjunction of these 
three conjuncts:

x is declared and x contains a value and x is greater than or equal to 0

Similarly, the precondition “in Chicago” can be thought of as:

state is Illinois and city is Chicago

A condition presented in Conjunctive Normal Form can be weakened by delet-
ing a conjunct. For example, strike “city is Chicago” from the above, and you are left 
with “state is Illinois”. Similarly, a condition can be strengthened by appending an 
additional conjunct. For example, the condition

state is NY and city is NYC 

can be strengthened by appending the conjunct “borough is Manhattan”, yielding:

state is NY and city is NYC and borough is Manhattan

Although the process of expressing a condition in Conjunctive Normal Form remains 
informal, deleting and adding conjuncts is a simple and mechanical way to think 
about weakening and strengthening.

Implicit Preconditions
Life is too short to require that every specification explicitly state its full precondition 
and postcondition. Instead, we abbreviate specifications, and leave the details to be 
inferred by the reader, resorting if necessary to the underlying theory of Sequential 
Refinements to understand the required coupling of constituent parts. Thus, the 
theory recedes into the background, but is available when needed as a basis for com-
prehension.

An example will make this point clear:



68 · Stepwise Refinement

/* Get from LA to NYC. */
   /* Get to Chicago. */
   /* Get to St. Louis. */
   /* Get to NYC. */

A reader of this abbreviated Sequential Refinement assumes and understands the 
implicit preconditions of each part:

/* Get from LA to NYC. */
   /* (Given that we are in LA) Get to Chicago. */
   /* (Given that we are in Chicago) Get to St. Louis. */
   /* (Given that we are in St. Louis) Get to NYC. */

It was not necessary to state the preconditions explicitly, and we chose to omit them 
on the assumption that a reader attempting to reconstruct why the plan works can 
infer them from context, and can validate that they were established prior to their 
being needed. 

The reader also understands that postconditions established by early steps can be 
invalidated by subsequent steps. For example, although the first sub-step established 
our location as Chicago, the second sub-step caused that to no longer be true: Once 
you are in St. Louis, you’re not in Chicago. In general, learning what preconditions 
hold requires a backward scan to see what postconditions, once established, have 
survived. In general, such a scan may need to reach arbitrarily far back in the code, 
which is undesirable.

We are “caught between a rock and a hard place”. On the one hand, we don’t want 
to require explicit (and repeated) re-articulation of conditions in order to propagate 
useful information to a locality in code; on the other hand, we don’t want to impose 
an unbounded search on a reader who is attempting to confirm what can be assumed 
at a given point in the code.

A partial remedy is to structure the program so that the textual distance between 
code that establishes a given postcondition, and code that relies on it as a necessary 
precondition, is reduced. For example, you should aim to avoid gratuitous gaps 
between the initialization of a variable, and use of that initialization. Of course, there 
is a world of difference between looking at the top of the page for information, and 
looking ten pages back.

One of the motivations behind the claim that:

☞ Many short procedures are better than large blocks of code.

relates to this issue. In particular, consider the difference between:

int k = 0;
/* 10 pages of code to do whatever. */
   ...
k++;

and code where those ten pages have been factored into a method named 
whatever:

int k = 0;
whatever();
k++;



Sequential Refinement  · 69

The advantage is not only that in the second example, the initialization is only two 
lines earlier. It is that the definition of method whatever can be positioned in the 
program where variable k is not even visible, i.e., in scope. Thus, a scan of the ten-
page body of whatever to confirm that it doesn’t overwrite the initialization of k 
would be obviated because its access to k is an impossibility.

If all else fails for making the program understandable, you can cross reference 
relevant code:

/* Given PRE (established at point p in the code), get to POST. */

Problem Reduction
Chapter 1 introduced the notion of problem reduction: To solve problem P, solve 
a different but related problem, P′, and then use that solution to solve the original 
problem P. Problem reduction is a special case of Sequential Refinement.

We illustrated a simplistic form of problem reduction in the example above:

/* Get from LA to NYC. */
   /* Get from LA to Chicago. */
   /* Get from Illinois to NYC. */

Here, we reduced a specific problem instance (Get from Chicago to NYC) to a more 
general problem (Get from Illinois to NYC). Each time we weaken a specification’s 
precondition, we are effectively performing a problem reduction. However, by “prob-
lem reduction”, we typically mean something more substantial. 

For example, consider this problem:

How many distinct values occur in an int array A[0..n-1]?

A direct attack on this problem would tally each first instance of a value i.e., each 
A[k] for which that value does not occur in A[0..k-1], for k from 0 through n-1 
(e.g., the number of blue circles in the example).

However, we observe that the number in question is precisely one more than 
the number of adjacent pairs of unequal elements in A′, a version of A that has been 
rearranged to be in numerical order (e.g., one more than the number of red bars in 
the example).

Accordingly, we can refine the specification: 

/* Let u = #unique values in A[0..n-1]. */

by the problem reduction:

/* Let u = #unique values in A[0..n-1]. */
   /* Let v = #unequal adjacent elements in a version of A[0..n-1]
      that has been rearranged into non-decreasing order. */
   u = v+1;

and then further refine the subproblem by:

73414714A

34141477A′

73414714A



70 · Stepwise Refinement

/* Let u = #unique values in A[0..n-1]. */
   /* Let v = #unequal adjacent elements in a version of A[0..n-1]
      that has been rearranged into non-decreasing order. */
      /* Let A′[0..n-1] be a version of A[0..n-1] that can be modified. */
      /* Rearrange A′[0..n-1] to be in non-decreasing order. */
      /* Let v = #unequal adjacent elements in A′[0..n-1]. */
   u = v+1;

This problem reduction will be advantageous if we use an efficient method for 
rearranging the values of an array into numerical order, e.g., QuickSort (p. 185) or 
MergeSort (p. 188). In the worst-case, where all values in A are unique, the number 
of steps taken by the naive brute-force solution is quadratic in n.41 But sorting can 
be done in n log n steps,42 so sorting followed by a scan through the array to count 
the number of unequal adjacent element pairs is fundamentally faster.

Sometimes problem reduction is merely convenient—because you happen to 
have useful code “on the shelf ” that may or may not result in a faster program.

In general, Sequential Refinement by problem reduction takes this form:

/* Specification P: Get from PRE to POST. */
   /* Get from PRE to A. */
      /* Define problem P′ based on PRE. */
      /* Solve problem P′. */
      /* Establish A from the solution to problem P′. */
   /* Get from B to POST. */

where satisfying A satisfies B.
We note that P and P′ may, in general, be problems in different domains. For exam-

ple, the Ricocheting Bee-Bee problem (p. 9) concerns matter (a metal pellet in a 
tin box), but may be reducible to a problem in optics (a ray of light in a glass box). In 
this case, what is needed is appropriate mappings from one domain to the other.

Case Analysis
Case Analysis implements a specification P as a choice of one step to execute from 
among P1, ... , Pn:

/* Specification P. */
   if ( condition1 ) /* Specification P1. */
   else if ( condition2 ) /* Specification P2. */
   ...
   else if ( conditionn-1 ) /* Specification Pn-1. */
   else /* Specification Pn. */

Case Analysis is appropriate when a specification requires distinct program behav-
iors in different situations. For example:

• A program that manipulates representations of real-world objects may need to 
distinguish between animal, vegetable, and mineral. A three-way Case Analysis 
would be in order if there is no commonality in the three cases.

41. For each k between 0 and n-1, the k values in A[0..k-1] are inspected, so the total num-
ber of steps is 0+1+...+(n-1), which Gauss could tell you is proportional to n squared (p. 10).
42. n log n on average for QuickSort, or n log n in the worst case for MergeSort. 



Case Analysis · 71

• You are simulating a rat running in a maze. At each step, the rat can either step 
into a neighboring cell in a given direction, or it can’t because there is a wall in 
the way. The rat’s behaviors in the two cases are different.

• After a search, you either found what you were looking for, or you didn’t. You 
need to do one thing or another depending on the outcome of the search.

Case Analysis is an essential method of refinement.

Examples
Suppose that you want to set variable y to be the absolute value of variable x. Then 
a Case Analysis can be used:

/* Let y be |x|. */
   if ( x>=0 ) y = x;
   else y = -x;

When x>=0, the absolute value of x is x, so that is what should be assigned to y. When 
x is negative, the absolute value of x is -x, so that is what should be assigned to y.

You should always be on the lookout for a uniform way to accomplish your goal 
rather than a Case Analysis, i.e., a way to perform the task without making unnec-
essary distinctions. For example, the Math library function abs subsumes the sign 
test, and lets you write the assignment to y in a uniform way:

/* Let y be |x|. */
   y = Math.abs(x);

Of course, the case analysis that has been obviated in your code probably still occurs 
in the library implementation of abs. But your code is cleaner, and less bloated. More 
importantly, it is expressed at a higher level of abstraction: It embraces the concept 
and vocabulary of absolute value. In general, it is an advantage to push Case Analyses 
down into methods, and you should bear this in mind when you start to design your 
own methods.

It is instructive to reflect on how uniformity in an operator like “+” spares you 
from Case Analysis. Put yourself back in grade school, and recall learning about 
signed numbers after you had already learned about subtraction. You were probably 
presented something like this:

The sum of a positive x and a signed y is:
• x, if y is 0
• x+y, if y is positive
• x-|y|, if y is negative

But once you learned the concept addition of signed numbers, a case split is completely 
unnecessary because these distinctions are built into the very definition of “+”. You 
write “x+y”, and the signed values are taken care of uniformly. This example is per-
haps obvious and belabored, but the following direct analogue of it isn’t. 

Consider arithmetic mod N, in which numbers start at 0, and after N-1, wrap 
around to 0 again. If you don’t know how to use the modulus operator (%), you will 
end up writing explicit case analyses that detect crossing over the wraparound point 
(in either the positive or negative direction), e.g.,

/* Increment k mod N. */
   if ( k==N-1 ) k = 0; else k++;

or



72 · Stepwise Refinement

/* Decrement k mod N. */
   if ( k==0 ) k = N-1; else k--;

But if you have mastered the modulus operator, you can write

/* Increment k mod N. */
   k = (k+1)%N;

or

/* Decrement k mod N. */
   k = (k+N-1)%N;

Detections of the wraparound points are subsumed by the modulus operator. 
Mastering this extended form of arithmetic can simplify your code. Of course, sim-
plicity (like beauty) is in the eye of the beholder, and use of the modulus operator 
will be more complex for some people.43

Thus far, we have given only examples where Case Analysis is not needed. But 
computation typically requires making distinctions that cannot be reduced to uni-
form operations. Each such case split uses a condition to discriminate among choices. 
Recognize this as a point of vulnerability:

☞ Be alert to high-risk coding steps associated with binary choices: “==” 
or “!=”, “<” or “<=”, “x” or “x-1”, condition or !condition, positive or 
negative, 0-origin or 1-origin, “even integers are divisible by 2, but array 
segments of odd length have middle elements”.

Reflect on each condition you write, and ask: Did I get it backwards? Did I miss a 
corner case?

Here are some sample specifications where essential distinctions must be drawn. 
Are the implementations correct?

Parity. Every integer n is either odd or even, and reflects the exact divisibility 
of n by  2. This is true, but it is not what the following code segment implements:

/* Output whether n is odd or even. */
   if ( (n%2)==1 ) System.out.println( "odd" );
   else System.out.println( "even" );

When n is odd and negative (which the specification does not rule out), n%2 is -1, 
not +1. Accordingly, the code will label negative odd numbers “even”, and is incor-
rect. The following code is correct:

/* Output whether n is odd or even. */
   if ( (n%2)==0 ) System.out.println( "even" );
   else System.out.println( "odd" );

Our mistake was a simple misunderstanding about the modulus operator.
Roots. Suppose we are writing code to output the roots of the quadratic equa-

tion Ax2+Bx+C=0. In high-school Algebra, we learned the mantra: “Minus B plus or 
minus the square root of B squared minus four A C, all over two A”. The output for-
mat will depend on whether the roots are real or imaginary:

43. See section Enumeration Mod N of Chapter 6 (p. 118) for a further discussion of mod-
ular arithmetic.



Case Analysis · 73

/* Let im be true iff the roots of quadratic Ax2+Bx+C=0 are imaginary. */
   boolean im;  // Roots are imaginary. 
   if ( B*B-4*A*C < 0 ) im = true; 
   else im = false;

When B*B-4*A*C is negative the roots are imaginary, and when it is positive the 
roots are real. The case of a B*B-4*A*C being exactly zero deserves separate care,  
lest we put it in the wrong case, but upon reflection we conclude that the code is 
correct, as written.

Because a Boolean expression can appear on the right side of an assignment state-
ment to a boolean variable, or in the initialization of a declaration of a boolean 
variable, the if-statement is not actually required:

/* Let im be true iff the roots of quadratic Ax2+Bx+C=0 are imaginary. */
   boolean im = B*B-4*A*C < 0;  // Roots are imaginary. 

This is yet another example where a Case Analysis can be replaced by a uniform 
expression, albeit one that uses a relational operator to do the discrimination.

Parallel lines. We are given two straight lines, and wish to report whether they 
are parallel or intersect:

/* Output whether lines y=m1·x+b1 and y=m2·x+b2 are parallel or intersect. */
   if ( (m1==m2) && (b1!=b2) ) System.out.println( "parallel" );
   else System.out.println( "intersect" );

When the slopes of two distinct lines are equal, the lines are parallel. That’s certainly 
true when the slopes are given as infinite-precision real numbers, but what about 
when they are given as finite-precision floating-point numbers?

For example, consider two lines, one with slope 0.0e0, and the other with 
slope equal to the smallest positive double-precision floating point number 
(2.2250738585072014E-308). A test for equality of these two slopes will be false, 
but do we really want to say that such lines intersect?

Similarly, suppose two lines have identical slopes (i.e., m1==m2 is true), and have 
near-equal but unequal intercepts (e.g., b1 and b2 could be the above two unequal 
values). Would we want to say that such lines are not identical (and are therefore 
parallel) or identical (and therefore intersect infinitely often)?

Our immediate goal here is to alert you to risks, and advocate for caution. Rather 
than get sidetracked on how to code this segment correctly, we will state a simple 
rule relevant to the example, and move on:

☞ Never test two floating-point numbers for equality or inequality.

Rather, explicitly compare the magnitude of their difference to a specific tolerance.

Generalization
The refinement of specification P by Case Analysis is:

/* Specification P: Get from PRE to POST. */
   if ( condition )
      /* Specification P1: Get from PRE && condition to A1. */
   else 
      /* Specification P2: Get from PRE && !condition to A2. */



74 · Stepwise Refinement

where if Ak is satisfied then POST is necessarily satisfied, for k either 1 or 2.
The code for each of P1 and P2 can be simpler than P itself because they benefit 

from the more limited before-states from which they must get to POST.
The analogous n-way version is:

/* Specification P: Get from PRE to POST. */
   if ( condition1 )
      /* Get from PRE && condition1 to A1. */
   else if ( condition2 )
      /* Get from PRE && !condition1 && condition2 to A2. */
   ...
   else
      /* Get from PRE && !condition1 && !condition2 && … && !conditionn-1
         to An. */

where if Ak is satisfied then POST is necessarily satisfied (for 1≤k≤n).
The implementation of each Pk is simpler than P itself because it benefits from the 

falsehood of condition1 through conditionk-1, and the truth of conditionk.

Iterative Refinement
An Iterative Refinement implements specification P by repeatedly executing step 
P′:

/* Specification P. */
   /* Setup for P′. */
   while ( condition )
      /* Specification P′. */

You may ask how repeatedly doing the same thing, P′, can make progress? Isn’t doing 
the same thing over and over again, and expecting a different outcome, the defini-
tion of insanity? 

The answer is that although the static text of P′ can be said to “do the same thing”, 
each dynamic execution of P′ (typically) occurs in a different state, so the effect each 
time is not the same. The meaning of P′ is parametric with respect to state, and there-
fore P′ (typically) does something different each time. If P′ ever fails to change the 
state, the program has entered an infinite loop from which there is no escape.

For every iteration, there are two essential considerations: Termination and cor-
rectness. Does the loop stop iterating, and if it does, will it have produced the desired 
outcome?44

Termination is addressed by the loop variant: Something must change in a man-
ner whereby progress is made. The maximal number of iterations remaining must 
be some nonnegative integer that counts down by at least one on each execution of 
the loop body. Typically, the loop variant is not an explicit program variable; rather, 
it is an implicit expression that can be written in terms of the program variables.

Correctness is addressed by the loop invariant: Something must stay the same, so 

44. Although we focus on loop termination as a desirable property, we sometimes deliberately 
write loops that are nonterminating. This can be because we wish to produce an unbounded 
amount of output, and are prepared to interrupt execution when we have seen enough. It also 
arises in the setting of reactive systems, where programs interact with one another and the real 
world for an indefinite period of time. 



Iterative Refinement · 75

the loop body P′ continues to apply each time. That property must be established 
by the setup code so that P′ applies the first time. Given that the invariant has been 
established by the setup, and is maintained on each iteration, it is guaranteed to 
hold if and when the loop terminates. The negation of the condition, taken together 
with the invariant, must entail what you were trying to accomplish with the loop.

Iteration in the Real World
Consider this analogy: To drive a nail into a block of wood, repeatedly hit the nail 
with a hammer:

/* P: Drive a nail vertically into a block of wood. */
   /* Setup: Stabilize the nail vertically, with height≥0. */
   while ( /* any of the nail sticks out */ )
      /* P′: Hit the nail with the hammer squarely. */

The loop variant is the height of the nail head above the block of wood. The loop 
invariant is the fact that the nail is vertical, and the height of the nail head is non-
negative.

Let’s restate the hammering program, annotated with further remarks about the 
variant and invariant:

/* Drive a nail vertically into a block of wood. */
   /* Setup: Stabilize the nail vertically, with height≥0. */
       // Establish invariant: Nail vertical, and height≥0.
                   // Initial variant: Height of nail.
   while ( /* any of the nail sticks out */ ) {
      /* Hit the nail with the hammer squarely. */
           // Maintain the invariant:
                        // Hit the nail vertically, but not so hard
                        // that its height becomes negative.
                     // Reduce the variant:
                        // Hit the nail hard enough to reduce the 
                        // height such that a finite # of hits suffices.
                     
      }
     // Invariant still holds: Nail vertical, and height≥0.
             // Variant reduced to zero: height==0.

What can go wrong with this code? 
• You may fail to adequately establish the initial verticality of the nail, and the 

very first blow of the hammer flattens it. This may occur even if the hammer 
hits the nail squarely. Thus, the loop body may be perfectly correct, but its pre-
condition is not met.

• You may fail to hit the nail squarely, and it bends over. The body of the loop 
must maintain the invariant that the nail is vertical, and hitting the nail at an 
angle is a bug. You manage to reduce the height to zero, but the nail ends up 
being sideways.

• You may hit the nail too hard, and the height goes negative. The body of the 
loop must maintain the invariant's requirement that height≥0, and hitting the 
nail too hard is a bug. Your hammering must not be so forceful that you split 
the wood, and drive the nail into the tabletop.

• You may hit a knot, and the nail stops going in fast enough, if at all. The body 



76 · Stepwise Refinement

of the loop must make enough progress so that the variant gets smaller with 
each blow. And not just smaller, but smaller in a way that guarantees termina-
tion. Hammering that reduces the nail height by a half each time is a bug: In 
calculus, the infinite series 1, ½, ¼, etc. “approaches 0 in the limit”, but in pro-
gramming we require loops to terminate in a finite number of steps. The value 
of the loop variant should be some necessarily nonnegative integer quantity that 
is reduced by at least one on each iteration. You can only do that a finite num-
ber of times before you reach 0.

Why, after the iteration, have you achieved your goal? Because negation of the con-
dition (the loop terminated, with the head flush with the surface of the wood), and 
the invariant (the body of the loop maintained the nail’s verticality) entail what 
you wished to accomplish: The nail is vertical and the head is flush with the wood’s 
surface.

Nontermination
There are three ways in which an iteration may fail to terminate, and it is worth dis-
tinguishing them.

First, at some point progress may cease. For example, replace the hammer with a 
feather, and the nail may not budge from the get-go. Even if you use a serious ham-
mer, you may come on a circumstance where your blows are insufficient to make a 
difference. This is the case of getting trapped at a stuck state. If ever a pass through 
the loop body fails to change the state, going around the loop another time won’t 
help because it too will make no change.

Second, although each time around the loop may change the state, no progress 
is really being made because you are destined to return to the state of some previous 
iteration. The loop appears to be doing something, but it is all for naught. You are 
caught in an endless cycle in state space, which is known as an orbit.

Consider this example: You are given a triangle that points up, and wish to rotate it 
in place (say, clockwise) so that it points down. You decide to use Iterative Refinement, 
rotating the triangle some computed angle on each iteration. However, suppose that 
angle turns out to be 120° every time:

/* Given a triangle pointing up, rotate it in place so that it points down. */
   while ( /* triangle is not pointing down */ )
      /* Rotate some computed angle. */

The triangle’s orientation goes from 0° to 120° to 240°, and then back to 0° again. 
Note that we are dealing with two different kinds of unending cycle: One is among 
states in state space, i.e., an orbit; the other is among the statements in the body of 
the loop.

The third way in which an iteration may fail to terminate is that it transitions 
through an infinite sequence of states. If you repeatedly halve the nail height in the 
real world, you don’t reach a height of zero in a finite number of iterations, i.e., the 
loop doesn’t terminate. What about in code?

Consider this loop:

h = 10;
while ( h!=0 ) h = h/2;

in which variable h is directly analogous to nail height. We have not indicated the 
type of h, and will consider several possibilities.

stuck state

orbit of states



Iterative Refinement · 77

Suppose the type of h is int or long. The loop would terminate after h takes on 
the values 10, 5, 2, 1, 0.

Suppose the type of h is float or double. The value of h would eventually reach a 
value close to the smallest positive (nonzero) floating-point number of type float or 
double, and that divided by 2 is zero. So, the loop would terminate in that case, too.

Finally, suppose the type of h is an infinite-precision real (or rational) number. Are 
there really such variables in our language, or is this just a theoretical fiction? The base 
language of Chapter 2 Prerequisites has only finite-precision arithmetic types (which 
we dispatched in the first two cases, above), but we shall learn in Chapter 18 Classes 
and Objects how to define new datatypes such as Rational. If we were to declare 
h to have type Rational, then in our halving loop it would take on the values of 
the infinite series 10, 5, 5/2, 5/4, 5/8, etc., and the loop would never terminate.45

Actually, we don’t need the complexity of an infinite arithmetic series to illustrate 
code that transitions through an infinite number of different states because the fol-
lowing trivial program does so:

while ( true ) System.out.println( "Hello World." );

The program’s output, which we have taken to be one of the dimensions of the 
state space, is in effect a textual value of unbounded size. Thus, each time the loop 
appends yet another greeting to the output, the program effectively transitions to 
yet another state.

Finding Loop Invariants
When you decide to use Iterative Refinement to implement a specification:

/* Get from PRE to POST. */

you must discover and articulate a loop INVARIANT. How do you do that? Answer: 
Start with POST, and weaken it.

Recall that weakening a condition means generalizing it. In our hammering exam-
ple, POST is “the nail is vertical and the height of the nail head is equal to 0”. This can 
be generalized by weakening it to become the INVARIANT “the nail is vertical and 
the height of the nail head is greater than or equal to 0”. Speaking set-theoretically, 
the states that satisfy INVARIANT are a superset of the states that satisfy POST. 

Each successive iteration improves the fit, i.e., shrinks the set. When the loop 
stops, the goal is established because the fit is either exactly POST, or a subset of  it.

Think of the loop INVARIANT as a parametric description of approximations to 
POST, and the role of the loop is to modify the parameters so that the approximation 
becomes either exactly POST, or some strengthening of POST.

In the hammering example, the parameter of the INVARIANT is the height of the 
nail above the surface of the wood. We attain our goal, POST, when that parame-
ter is 0 (and the nail remains vertical). The set of states that satisfy the INVARIANT 
include many with nonnegative heights. Some of these (those with height zero) are 
contained in POST.46

45. If the type of variable h were Rational, the code would need to be different:
Rational h = new Rational(10);
while ( !Rational.isZero(h) )
   h = Rational.divide( h, new Rational(2) );

but this is a small technicality. 
46. Why plural? Is there not only one state with height zero? You are forgetting all the other 
dimensions of the state space, e.g., the type of wood, the kind of nail, etc. 

sequence of states

POST

INVARIANT

improving approximations



78 · Stepwise Refinement

Each blow of the hammer eliminates many of the states that satisfy the INVARIANT, 
but with height greater than zero. The precise number of such eliminated states will 
depend on the forcefulness of the blows.

The loop terminates when the nail height is equal to zero, i.e., when the only states 
that continue to satisfy the INVARIANT are those with height zero.

In our triangle example, the INVARIANT must include POST (the goal state, 180°), 
as well as all states the triangle may take on before reaching the goal state, i.e., 0°, 120°, 
and 240°. Unfortunately, the set of states described by the INVARIANT never gets 
any smaller because the body of the loop is inadequate. We are caught in an orbit in 
state space, and no progress is being made.

Generalization
The Iterative Refinement of specification P is:

/* Specification P: Get from PRE to POST. */
   /* Setup: Get from PRE to INVARIANT. */
   while ( condition ) {
      /* Get from condition && INVARIANT to INVARIANT. */
      }

where !condition && INVARIANT entails POST.

Termination requires the existence of an integer variant expression that is neces-
sarily nonnegative, and that is necessarily reduced by at least one on each iteration. 
This can only go on a finite number of times, and therefore the loop is guaranteed 
to terminate.

We illustrate Iterative Refinement with three famous integer algorithms: Integer 
Division, Euclid’s Algorithm for the greatest common divisor, and the mysterious 
Collatz Conjecture.

Integer Division
We introduced important concepts associated with Iterative Refinement in the set-
ting of carpentry rather than program development. It is time to write some real 
code. Our goal now is to illustrate those concepts without getting distracted, so the 
example is deliberately simple: We implement unsigned integer division (/) and 
modulus (%) on the assumption that those built-in operators are not available:

/* Given int x≥0 and int y>0, set int q to x/y, and int r to x%y. */ 1

The arithmetic expressions x/y and x%y in the specification’s postcondition are short-
hand that we must flesh out using their definitions. The following diagram depicts 
POST, a characterization of the set of desired after-states:

y y y y y y y y

x

q
r

PRE: x≥0, y>0
POST: x=q*y+r, 0≤r<y, and 0≤q

The quotient q is the whole number of times y occurs in x; the remainder r is what 



Iterative Refinement · 79

would be left over if those instances of y were to be removed from x. Thus, POST is 
the set of states ⟨r,q⟩ that satisfy the condition: x=q·y+r, where 0≤r<y and 0≤q.

Clearly, we require an iteration. For the purpose of this exercise, we ignore the pos-
sibility of a clever algorithm, and just use repeated subtraction, i.e., we cast instances 
of y out of (a copy of) x one at a time until no more whole instances of y remain. 
Whatever is left over is r.

The iteration is indeterminate because the number of repetitions is unknown; in 
fact, it is the very quotient q that we are seeking:

/* Given int x≥0 and int y>0, set int q to x/y, and int r to x%y. */
   ______
   while ( ___ ) ______

2

To find the loop INVARIANT, we ask: What would the diagram look like at an 
intermediate stage, after an arbitrary number of iterations? We do this by weakening 
POST, e.g., by eliminating the constraint that r<y:

y y y y y

x

q
r

INVARIANT: x=q*y+r, 0≤r and 0≤q

Think of r, the green portion of the diagram, as the protruding portion of a nail. 
With each blow of our hammer, we drive the nail further into the wood by an amount 
y. With each reduction of r by y, we increment q to maintain the INVARIANT:

/* Given int x≥0 and int y>0, set int q to x/y, and int r to x%y. */
   ______
   while ( ___ ) { r = r-y; q++; }

3

In carpentry, the goal is to drive the nail so that the head becomes flush with 
the surface of the wood, but without splitting it. We didn't elaborate on the exact 
mechanism that accomplishes this, but it presumably has something to do with the 
counterforce of the wood surface eventually blunting the force of the hammer, allow-
ing us to drive the last bit of nail into the wood without splitting it. But in Integer 
Division, our hammer is primitive: It can only reduce the nail height by a fixed inte-
ger amount y, and as a result a portion of the nail (some remainder r less than y) 
may remain exposed:

/* Given int x≥0 and int y>0, set int q to x/y, and int r to x%y. */
   ______
   while ( r>=y ) { r = r-y; q++; }

4

Initially, when we haven’t yet cast any instances of y out from r, the setup code 
must establish the INVARIANT. The diagram looks like this:

y

x

r

INITIAL INVARIANT: x=q*y+r, but q=0, i.e., x=r



80 · Stepwise Refinement

Think of x as the full length of the nail. In the same way that a carpenter must stabilize 
a nail vertically before beginning to hammer, we must initialize r to x and q to 0: 

/* Given int x≥0 and int y>0, set int q to x/y, and int r to x%y. */
   int r = x; int q = 0;
   while ( r>=y ) { r = r-y; q++; }

5

The loop variant is some necessarily nonnegative quantity that is reduced by at 
least 1 on each iteration, and therefore must reach 0. Think of this as an upper bound 
on the number of iterations remaining. One such quantity is x/y-q. Another is 
r-x%y. The first expression is reduced by one on each iteration; the second expres-
sion is reduced by y.

There are numerous algorithms for division, and even a schoolchild doesn’t use 
repeated subtraction. Each such algorithm has its own INVARIANT, and its own kind 
of hammer [10].

Euclid’s Algorithm
Loop invariants and loop variants are intrinsic to iterative computation, and have 
been known to mathematicians since Euclid nearly 2000 years ago [11].

The greatest common divisor (GCD) of two positive integers is the largest integer 
that divides them both exactly, i.e., without a remainder. For example, 6 is the GCD 
of 18 and 24 because it divides both 18 and 24 exactly, and no larger integer does.

Euclid’s Algorithm is:

/* Given x>0 and y>0, return the greatest common divisor of x and y. */
static int gcd(int x, int y) {
   while ( x!=y )
      if ( x>y ) x = x-y;
      else y = y-x;
   return x;
   }

What are the loop invariant and loop variant, and how do they contribute to the cor-
rectness and termination arguments?

Let GCD be the mathematical function (not the code) for the greatest common 
divisor, and let X and Y be the initial argument values in a call to gcd (the code). 
The loop invariant is quite simply that x>0 and y>0 and GCD(X,Y)=GCD(x,y). 
Clearly, this equality holds immediately after method invocation, when x and y are 
initialized to X and Y, respectively. So, the invariant is established from the start. 

Why does the invariant continue to remain true upon execution of the body of 
the loop when x≠y? The if-statement discriminates among the two remaining cases: 
x>y and y>x.

Assume, without loss of generality, that x>y, and suppose that x and y have a 
greatest common divisor of d, i.e., x=x′·d and y=y′·d, for some x′ and y′. Then x-y 
has that same factor d in common with x and y because x-y= x′·d−y′·d = (x′−y′)·d. 
Thus, replacing x with x-y preserves the property that x and y have d as a greatest 
common divisor, and because x>y both x and y remain positive.

The symmetric argument holds if y>x. 
Accordingly, replacing the larger of x and y with the difference preserves the GCD, 

and the property that x and y are positive.
Arguments x and y start out positive, and on each iteration the larger is replaced 



Iterative Refinement · 81

by the difference of the two, which is also positive. A trivial upper bound on the total 
number of iterations before x and y become equal is thus x+y. Therefore, the itera-
tion necessarily terminates.

Finally, since the GCD of any number and itself is that number, and when the 
iteration stops, x and y are equal, the invariant reads: GCD(X,Y)=GCD(x,y)= 
GCD(x,x)=x. So, returning x returns GCD(X,Y), as required. 

Collatz Conjecture
Start with any positive integer. If it is even, divide it by 2; otherwise, multiply it by 3 
and add 1. Repeat the process until reaching 1. The Collatz Conjecture [12] is that 
no matter what positive integer n you start with, the sequence will reach 1, e.g., 3, 10, 
5, 16, 8, 4, 2, 1. 

Consider the following two program segments that purport to implement the 
same specification:

/* Given input n>0, output “done”. */
   int n = in.nextInt();
   System.out.println( "done" );

and

/* Given input n>0, output “done”. */
   int n = in.nextInt();
   while ( n!=1 )
      if ( (n%2)==0 ) n = n/2;
      else n = 3*n+1;
   System.out.println( "done" );

The first segment is clearly correct: It reads an integer, ignores it, and prints “done”. 
The second segment is more convoluted, but is it equivalent, i.e., does it have the 
same net effect as the first when executed?

One difference is that the second program will certainly take longer. But we are 
only asking about net effect, and so, speed is of no concern. Another difference is 
that the second program may lead to values of n that are so large that they exceed 
the capacity of an int variable to store them. For the purpose of this exercise, how-
ever, please ignore this issue, and assume that there is no upper bound on the size of 
integers that can be stored in int variables.

With these caveats in mind, we ask again: Does the second program segment neces-
sarily print “done”? The answer turns on whether its loop necessarily terminates. The 
Collatz Conjecture is that the loop necessarily terminates. But the Collatz Conjecture 
is an open problem in Mathematics, i.e., it is not known whether it is true or not.47

The example points out that although you may write a loop, and have its invari-
ant correct, you may have difficulty proving that it will always terminate with the 
answer. Said more technically: It’s not always so easy to find a loop variant. In fact, 
the situation is far worse than merely difficult: There are loops for which it is not 
logically possible to know whether or not they terminate. It is not only unknown; 
it is unknowable.48

47. Paul Erdős, the prominent 20th-century mathematician, said this about the Collatz 
Conjecture: “Mathematics may not be ready for such problems” [42].
48. Exercise 29. 

Collatz Conjecture

n

4, 2, 1



82 · Stepwise Refinement

Recursive Refinement
A Recursive Refinement implements specification P by identifying smaller instances 
of the same problem within a given problem, and then using the very refinement 
being defined to solve those subproblems, as well:

/* Specification P. */
   if ( base case ) /* P0. */
   else
      /* Identify smaller instance(s) of P within P itself, apply this
         approach to each such instance, and combine the results. */

Recursive Refinement resembles Stepwise Refinement in its use of Divide and 
Conquer, but it is a structure for the code we are writing, not an approach to the 
process of writing code.

Something whose parts resemble the whole has self-similarity. A problem with 
self-similarity looks the same at all scales. When you zoom in for a closer look, you 
see the same, or a very similar, structure. Another term for such an object is fractal.

The Sierpiński Triangle shown is an excellent geometric example of a fractal, but 
once you have been introduced to the idea of self-similarity, you begin to see fractals 
everywhere, especially in Nature.

  Fractals such as the Sierpiński Triangle go on forever (in principle), but others, 
like the branches of an actual tree or the fronds of a fern, stop after a finite number 
of self-embeddings.

 Even the lowly integers can be seen as a fractal, for example, at rocket bases, where 
0 is usually pronounced as “BLASTOFF”.  To count down from 5, you just say 5, and 
then count down from 4, etc. More generally, the backwards sequence of integers 
that starts at n>0 contains the self-similar backwards subsequence of integers that 
starts at n-1.  

Recursive Refinement works by identifying the fractal structure of a problem, and 
by applying the very refinement we are defining to those self-similar parts. To do so 
requires that it have a name so we can refer to it. Accordingly, we write the refine-
ment as the body of a method, and then use the method’s name (within its own body, 
and from elsewhere) to invoke it.

For example, consider the specification to count down from five. It can be imple-
mented recursively as:

/* Count down from 5, and say “BLASTOFF” at 0. */
   countdown(5);

where method countdown is defined by:49

/* Count down from n, and say "BLASTOFF" at zero. */
static void countdown(int n) {
   if ( n==0 ) System.out.println( "BLASTOFF" );
   else {
      System.out.println( n );
      countdown(n-1);
      }
   }

49. This is the first time in the text where we define a method. All method definitions will 
be prefixed by the modifier static until Chapter 18 Classes and Objects, when absence of 
static is explained. You may safely ignore the modifier until then.

543210



Recursive Refinement · 83

As illustrated, a recursive method has parameters; it can also have a return value. 
For example, the specification given Carl Friedrich Gauss to sum the integers from 
1 to 100 could have been implemented recursively as:

/* Output the sum of 1 through 100. */
   System.out.println( sum(100) );

where method sum is defined by:

/* Return the sum of 0 through n. */
static int sum(int n) {
   if ( n==0 ) return 0;
   else return sum(n-1)+n;
   }

This is a direct application of the fractal structure of the integers given earlier. The 
additions proceed from left to right as the recursion emerges from the base case 
e.g., (…(((0+1)+2)+3)+…+n). It is analogous to the iterative code introduced in 
Chapter 1:

/* Let sum be the sum of 0 through n. */
   int sum = 0;
   for (int k=1; k<=n; k++) sum = sum+k;

An alternative definition of sum performs the additions from right to left, on the 
way to the base case. This approach, which is known as accumulation, leverages the 
associativity of addition, and defines sum as:

/* Return the sum of 0 through n. */
static int sum(int n) { return sumAux(n,0); }

where the auxiliary method sumAux is defined by:

/* Return the sum of 0 through n, and acc. */
static int sumAux(int n, int acc) {
   if ( n==0 ) return acc;
   else return sumAux(n-1, n+acc);
   }

The sum computed this way is (1+(2+(3+…+(n+0)…))). It is analogous to the 
iteration:

/* Let sum be the sum of 0 through n. */
   int sum = n;
   for (int k=n-1; k>0; k--) sum = k+sum;

The examples we have given here were selected to show the resemblance of recur-
sion to iteration when a problem has only one instance of self-similarity. The full 
power of recursion is best illustrated with problems whose fractal nature consists 
of two or more instances of self-similarity. We defer such examples until later in the 
text.50

50. Recursive Refinement is used by Worst-Case Linear-Time Median (p. 180), QuickSort 
(p. 185), MergeSort (p. 188), and Depth-First Search (p. 286).



84 · Stepwise Refinement

Library of Patterns
Patterns are parameterized compositions of program constructs that have proven 
to be useful in practice. The more patterns you know, the less you have to reinvent. 
As you gain experience in programming, master new patterns and add them to your 
personal library. The patterns presented in the text and deemed essential are col-
lected in Appendix II.

For the purpose of Stepwise Refinement, a pattern offers a more efficient develop-
ment step because some details of the internal coupling of a pattern’s subparts have 
been established once and for all, and do not have to be rethought. 

Choosing a Refinement
Programming is not deterministic, and there are multiple programs that may emerge 
to solve any given problem. From where, exactly, does the variety derive?

The first opportunity for variety arises when we are programming by top-down 
Stepwise Refinement, and select the form of refinement. The overall shape of an algo-
rithm is often determined by that choice because code structured as a fixed number 
of steps in a Sequential Refinement is likely to encode a different approach from 
code that is structured as a Case Analysis, which is likely a different approach from 
code that is structured as an Iterative Refinement. 

Recall, from Chapter 1, the two different implementations for outputting the sum 
of the integers from 1 through n. The brute-force solution was a Sequential Refinement, 
consisting of three steps, the second of which was an Iterative Refinement:

/* Output the sum of 1 through n. */
   int sum = 0;
   for (int k=1; k<=n; k++) sum = sum + k;
   System.out.println( sum );

The alternative solution consisted of only one statement that was deemed “simple to 
write”, and did not involve any refinement at all:

/* Output the sum of 1 through n. */
   System.out.println( n*(n+1)/2 );

These are two different algorithms.
A second opportunity for variety arises when defining the specific constituents 

that make up a given refinement. Recall the two different implementations of swap 
presented in Chapter 3:

/* Swap x and y. */
   int temp = x;
   x = y;
   y = temp;

/* Swap x and y. */
   x = x+y;
   y = x-y;
   x = x-y;

Both implementations are three-step Sequential Refinements, but the individual 
steps are completely different. The first involves only data movement, whereas the 
second involves specific properties of arithmetic operators. These are two differ-
ent algorithms for swap. The point here is not that the second implementation is 
good.51 Rather, the point is only to illustrate two distinct ways in which a three-step 
Sequential Refinement can implement the same specification.

51. In fact, we denigrated it in Chapter 3.



Extended Example: Running a Maze · 85

There is still plenty of room for originality despite the limited number of refine-
ment forms. This potential is particularly true given that Sequential Refinement 
subsumes problem reduction. The choice of the loop invariant in Iterative Refinement 
is another vital source of variety because two invariants for the same problem is 
likely to lead to very different algorithms, as demonstrated in Chapter 11 Sorting.

Extended Example: Running a Maze
Recall from Chapter 1 that we had started to develop a solution for this problem:

Background. Define a maze to be a square two-dimensional grid of cells sepa-
rated (or not) from adjacent cells by walls. One can move between adjacent cells if 
and only if no wall divides them. A solid wall surrounds the entire grid of cells, so 
there is no escape from the maze.

Problem Statement. Write a program that inputs a maze, and outputs a direct 
path from the upper-left cell to the lower-right cell if such a path exists, or outputs 

“Unreachable” otherwise. A path is direct if it never visits any cell more than once.
We now replay that development in the context of Stepwise Refinement, and then 

extend the code as a further illustration of the methodology:

☞ Use Stepwise Refinement. Write simple code immediately, otherwise 
refine the problem statement using: (a) Sequential Refinement, (b) Case 
Analysis, (c) Iterative Refinement, (d) a known pattern.

The specification of the problem statement:

/* Find path in maze from upper-left to lower-right, if one exists. */ 1

was first refined using a known architectural pattern:

/* Find path in maze from upper-left to lower-right, if one exists. */
   /* Input. */
   /* Compute. */
   /* Output. */

2

Then, following several precepts: 

☞ Write comments as an integral part of the coding process, not as 
afterthoughts.

☞ Repeatedly improve comments by relentless copy editing.

we arrived at a more robust elaboration of the three steps. In essence, we used the 
pattern as a scaffolding on which to hang different aspects of the problem require-
ments:

/* Find path in maze from upper-left to lower-right, if one exists. */
   /* Input a maze of arbitrary size, or output “malformed input” and
      stop if the input is improper. Input format: TBD. */
   /* Compute a direct path through the maze, if one exists. */
   /* Output the direct path found, or “unreachable” if there is none.
      Output format: TBD. */

3

This decomposition of the problem is where we left off in Chapter 1.



86 · Stepwise Refinement

The next steps are analysis, not coding. We telescope the relevant rules here:

☞ Analyze first.
☞ Confirm your understanding of a programming problem with concrete 

examples. Elaborate the expected input/output mapping explicitly.
☞ There is no shame in reasoning with concrete examples.
☞ Simple examples may be as good (or better) than complicated ones for 

guiding you toward a solution.
☞ Seek algorithmic inspiration from experience. Hand-simulate an algo-

rithm that is in your “wetware”. Be introspective. Ask yourself: What am 
I doing?

Let’s assume that the outcome of our analysis is the following set of five graduated 
examples. The examples suggest an algorithm that performs a systematic clockwise 
exploration that hugs walls and effectively works its way out of cul-de-sacs, as nec-
essary, until reaching the lower-right cell, or discovering that it is unreachable.

In Example 1, we found a path from the upper-left to the lower-right cell by merely 
traversing cells along the outer perimeter. Green cells were unvisited, as was the 
unreachable (blue) cell.

In Example 2, we interposed a protruding wall that blocked the move that in 
Example 1 was from 6 to 7. We found a path by traversing cells as in Example 1, but 
when blocked, continued along the protruding wall. On reaching the end of the pro-
truding wall, we pirouetted around to its other side, and continued to the lower-right 
cell.

In Example 3, we interposed a second protruding wall that blocked the move that 
in Example 2 was from 11 to 12. The path hugged the top of the second protruding 
wall until it emerged from the cul-de-sac, at which point we pirouetted around to 
the other side of the second wall, and continued to the lower-right cell. Yellow cells 
are part of the abortive side excursion.

In Example 4, we interposed a third wall that blocked the move that in Example 
3 was from 12 to 13. The path hugged the top (and left side) of this third wall, and 
finally pirouetted to its other side at cell 1, at which point it hugged the wall’s other 
side until reaching the lower-right cell. The yellow cells are all visited but are not part 
of the final direct-path solution.

In Example 5, we added a wall that makes the lower-right cell unreachable. The 
exploration proceeded exactly as it did in Example 4, but on failing to enter the low-
er-right cell, continued along the bottom and left outer walls until reaching the 
upper-left cell once again. We visited every reachable cell, after which we concluded 
that the lower-right cell is unreachable.

The full maze explorations are not “direct”, but we conjecture that they may form 
the core of a solution. We decide to defer the “direct” requirement for now, and focus 
on doing a systematic exploration that includes cul-de-sacs. We assume that we will 
be able to find a way to trim off side excursions later:

/* Find path in maze from upper-left to lower-right, if one exists. */
   /* Input a maze of arbitrary size, or output “malformed input” and
      stop if the input is improper. Input format: TBD. */
   /* Compute a direct path through the maze, if one exists. */
   /* Output the direct path found, or “unreachable” if there is none.
      Output format: TBD. */

4

54321
6
7
8
9

Example 1

54321
678
11109
12
13

Example 2

54321
678

9
121110
13

Example 3

1
2
3
4

98765
Example 4

Example 5



Extended Example: Running a Maze · 87

We are now ready to code. 
Mazes have unbounded size, yet programs are finite. Therefore, we need a way to 

express the computation using a construct that can perform an unbounded number 
of steps. There are only two choices: Iteration and recursion.

An exploration that ignores side excursions and cul-de-sacs is linear: You just keep 
plowing ahead. This observation suggests iteration rather than recursion. We may 
have a momentary twinge of concern on realizing that big cul-de-sacs can have lit-
tle cul-de-sacs (just as great fleas can have little fleas), and thereby explorations can 
have a fractal nature. If this issue turns out to matter, we may want to replace itera-
tion with recursion, but having made our decision for now to ignore the question of 
direct paths, the choice of iteration over recursion smells right:

☞ If you “smell a loop”, write it down.

This application of Stepwise Refinement requires little thought, and is close to being 
what we call a “no-brainer”:

/* Find path in maze from upper-left to lower-right, if one exists. */
   /* Input a maze of arbitrary size, or output “malformed input” and
      stop if the input is improper. Input format: TBD. */
   /* Compute a direct path through the maze, if one exists. */
      _________
      while ( _________ ) _________
      _________
   /* Output the direct path found, or “unreachable” if there is none.
      Output format: TBD. */

5

Even though the refinement may be a no-brainer, it accomplishes a great deal in terms 
of Divide and Conquer: One problem is partitioned into four:

☞ Benefit from the fact that a while-loop divides a region of code into four 
subregions.

This coding step can’t do harm, or be very wrong. Of course, the devil will be in the 
details.

We name the four subregions of an Iterative Refinement thus:

initialization
while ( !termination ) body
finalization

and suggest, cookbook style, that coding should follow this order of attack:

☞ Code iterations in the following order: (1) body, (2) termination, 
(3) initialization, (4) finalization, (5) boundary conditions.

We proceed in the suggested order, below.
When working on the body, we aim for code that avoids consideration of spe-

cial cases, like the first or last iteration. In the course of coding the body, if you find 
yourself worrying about those cases, you are breaking the rule. You are supposed to 
be working on part (1), the body, but are getting distracted by part (2), (3), and (4) 
considerations, which will come soon enough.



88 · Stepwise Refinement

Here is a recipe for coding a loop body:

☞ Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the 
“program state” when the music stops, i.e., at the instant the loop-body is 
about to execute yet again. If you had stopped one iteration later, what 
would have looked the same (the “loop invariant”), and what would have 
changed (the “loop variant”)?

Readers unfamiliar with the game of musical chairs only need to know that n chil-
dren dance around n-1 chairs until the music stops, at which point they scramble for 
a chair. The child who doesn’t get a chair is ejected, a chair is removed, and the music 
resumes. The salient part of the game for us is not the chair part; it is the uncertainty 
about when the music will stop. Think of the music as program execution. The pur-
pose of the analogy is to force you to consider program state after an arbitrary 
number of iterations, when the music suddenly stops.

Where are you when the music stops? In the maze world, you are in some cell, 
ready to make your next move. In the program, you are at the beginning of the loop 
body ready to perform an arbitrary next step of the iteration.52

In musical chairs, when the music stops, you have to size up the situation, and 
then decide what to do. In the loop body, that is also what must happen. The loop 
body must deal with every situation that might arise.

☞ A Case Analysis in the loop body is often needed for characterizing 
different ways in which to decrease the loop variant while maintaining 
the loop invariant.

We can review the five Examples from our analysis, and tease out four distinct cases.
 In Example 1, most of the transitions are similar, e.g., from 1 to 2, from 2 to 3, ..., 

and from 8 to 9. Imagine that you are in one of the peripheral cells of the maze fac-
ing the wall with your outstretched left arm touching the surface in front of you. In 
each such case, you sidestep to the right. If we represent your orientation by a black 
arrow, we can depict in a before-and-after diagram the rule you are following: 

• Normal wall. Step sideways to the right.

↑ ↑

The same rule applies to the vertical movements as well as the horizontal movements, 
i.e., it depends on the way you are facing. At the corner, 5, a second rule applies:

• Wall at convex corner. Turn the corner 90° clockwise.

↑ →

Both rules transition to an adjacent wall without your needing to remove your hand 
from the surface; the convex-corner rule also changes your orientation.

In Example 2, the same two rules apply, and include some additional cases, i.e., 
normal-wall transitions from 6 to 7, from 10 to 11, from 11 to 12, and from 12 to 13, 
and convex-corner transitions at 6 and at 11. An additional rule is needed, however, 
to transition from 7 through 8 and 9 to 10:

• Wall at hairpin turn. Turn the hairpin 180° counterclockwise, passing through 

52. We only consider stopping when we are at the beginning of each complete execution 
of the body, a slight difference from musical chairs, for which the music may stop at any time.

54321
6
7
8
9

Example 1

54321
678
11109
12
13

Example 2



Extended Example: Running a Maze · 89

two “corner” cells in an instant, and pirouetting to the other side of the wall, 
touching the opposite surface.

↓
↑

As in the first two rules, you do not need to take your left hand off the wall as you 
slither around the hairpin turn, and end up touching the obverse surface of the wall.

 In Example 3, the current three rules cover all situations, although additional 
reflection is needed to understand exactly how. The difference between Examples 2 
and 3 only arises at 11 (in Example 2) when the interposed second wall prevents the 
sidestep from 11 to 12. Backing out of the cull-de-sac (shown as a and b in Example 
3) is accomplished by an additional application of the convex-corner rule at a (lead-
ing you to face down), followed by a sidestep from a to b, followed by a hairpin turn 
from b through 9 and 10 to 11.

In Example 4, you need a fourth rule to move from a through b to c, on your way 
out of the giant cul-de-sac (yellow):

• Wall at concave corner. Turn the corner 90° counterclockwise, passing through 
the corner cell in an instant.

↓
→

Once again, you are able to move from wall to wall without removing your hand.
For each of the four cases, you are following the so-called “left-hand rule”:
• Invariant 1: Your left hand is on the interior surface of a peripheral wall.

If you keep your left hand on the interior surface of a peripheral wall and advance 
clockwise, you will eventually reach every cell that is connected to it. In Example 1, 
it is clear that the given surface runs along the inside of the outer maze wall, and is 
connected to the lower-right cell. In other examples, the notion of “peripheral wall” 
is less clear. In these cases, imagine that the interior wall surface is made of a flexible 
rubber sheet. To make an additional peripheral-wall segment, pinch the rubber 
between two fingers, and pull it inward to make the new segment. Provided that in 
doing so you don't subdivide the interior space, this operation preserves any valid 
path (red) between them, albeit the path is now stretched out along the additional 
interior segment. If the interior space is subdivided, the upper-left and lower-right 
cells can end up in the same or in different partitions. If the same, the path is short-cir-
cuited and omits the region containing neither; if different, the goal is unreachable.

Reflecting on the progress you make whenever you apply one of the four rules, we 
see that you get closer to the lower-right cell (if it is reachable) one wall-segment-sur-
face at a time. Thus, the “distance” from the goal that is being reduced each time is 
not Euclidean,53 or the so-called Manhattan metric,54 or the number of cells away. 
Rather, it is the number of wall-segment surfaces away:

• Variant 1: The number of wall-segment-surfaces away from either the 
lower-right cell or from the surface at which you discover that the lower-right 
cell is unreachable.

The variant includes the possibility that the goal is unreachable (as in Example 5).
All we have to do now is to refine the loop body with four-way Case Analysis:

53. 
54. |row - row′|+|col - col′|

54321
678
ab9
121110
13

Example 3

1
2

bc3
a4

98765
Example 4

exteriorinterior

exteriorinterior

exteriorexterior

interior

exteriorexterior

interior

unreachable

Example 5



90 · Stepwise Refinement

if ( ____ ) ____
else if ( ____ ) ____
else if ( ____ ) ____
else ____

We would then code the conditions (to recognize the wall topologies for the different 
rules), and code the statements (to perform the corresponding maneuvers). This is 
certainly doable, but the topologies and maneuvers are complex, which would result 
in considerable code complexity. For example, the condition that discovers the pos-
sibility of sidestepping (the first rule) would have to detect two collinear adjacent 
walls that are not separated by a perpendicular third wall.

It will be good to avoid such complexity, which we can do by implementing each 
of the four rules by a sequence of micro-steps. In designing the micro-steps, our goal 
is fewer cases to consider, with simpler conditions to test, and simpler maneuvers to 
execute. We shall allow only one condition to test: 

• Facing a wall or not
and three maneuvers to execute:

• Turn 90° clockwise in place
• Turn 90° counterclockwise in place
• Step forward one cell

The four rules are implemented by micro-steps, as follows:
• Normal wall. Turn 90° clockwise, then step forward and turn 90° counter-

clockwise to restore our original direction. This sequence of actions effectively 
sidesteps one cell to the right:

↑ → → ↑( )
• Wall at convex corner. Turn 90° clockwise, which leads us to again face a wall:

↑ →

• Wall at hairpin turn. Turn 90° clockwise, and then pirouette to the other side 
of the wall by thrice stepping forward and turning 90° counterclockwise:

↓ ← ← ↓
↓ → → ↑( ) ( ) ( )

• Wall at concave corner. Turn 90° clockwise, then make our way around the cor-
ner by twice stepping forward and turning 90° counterclockwise:

↓ ← ← ↓
↓ →( )( )

Notice that in all but the convex-corner case, we begin by taking our left hand off the 
wall temporarily until the macro-step is complete. 

If the micro-steps are to be spread across multiple iterations of our loop, the loop 
invariant can no longer be that our hand is on a wall-segment-surface because this 
is manifestly not the case. Where then is our hand after each micro-step? When our 
hand is not on a wall-segment-surface, we can distinguish two cases: It is at a door 
(a non-wall through which we must pass), or it is at an other (a position about which 
we currently know nothing).

In the diagrams, we have grouped state-pairs with parentheses, and note that the 



Extended Example: Running a Maze · 91

first state of each pair is an other case, whereas the second state is a door case. We 
must always step through a door, but would have no idea what to do if we had to 
confront an other situation. Accordingly, we resolve to require that the operations 

“Step forward” and “Turn 90° counterclockwise” be performed as an indivisible pair 
within the same loop iteration, thereby making other states transitory.

With the vocabulary of door in hand, we can now state a new invariant and vari-
ant:

• Invariant 2: Your left hand is on the interior surface of a peripheral wall, or at 
a door.

• Variant 2: The number of wall-segment-surfaces-or-doors away from either 
the lower-right cell or from the surface-or-door at which you discover that the 
lower-right cell is unreachable.

We have replaced Invariant 1 (face a wall-segment-surface) with one that holds in 
more situations (e.g., face a wall-segment-surface-or-door), which is an example of 
a technique that often proves effective in simplifying code: Weakening the (original) 
invariant. We are now ready to refine the loop body with a two-way Case Analysis:

/* Find path in maze from upper-left to lower-right, if one exists. */
   /* Input a maze of arbitrary size, or output “malformed input” and
      stop if the input is improper. Input format: TBD. */
   /* Compute a direct path through the maze, if one exists. */
      _________
      while ( _________ )
         if ( /* facing-wall */ ) 
            ___________
         else ___________
      _________
   /* Output the direct path found, or “unreachable” if there is none.
      Output format: TBD. */

6

and specify actions for the two cases:

/* Find path in maze from upper-left to lower-right, if one exists. */
   /* Input a maze of arbitrary size, or output “malformed input” and
      stop if the input is improper. Input format: TBD. */
   /* Compute a direct path through the maze, if one exists. */
      _________
      while ( _________ )
         if ( /* facing-wall */ )
            /* Turn 90° clockwise. */
         else {
            /* Step forward. */
            /* Turn 90° counterclockwise. */
            }
      _________
   /* Output the direct path found, or “unreachable” if there is none.
      Output format: TBD. */

7

Having now completed the Case Analysis, and therefore the loop body, we turn to 
(2) termination. What is needed is the condition for continuing, i.e., negation of the 
condition for stopping. The exploration must continue as long as we haven’t reached 
either the lower-right cell, or the upper-left cell about to cycle around again: 



92 · Stepwise Refinement

/* Find path in maze from upper-left to lower-right, if one exists. */
   /* Input a maze of arbitrary size, or output “malformed input” and
      stop if the input is improper. Input format: TBD. */
   /* Compute a direct path through the maze, if one exists. */
      _________
      while ( /* !in-lower-right && !in-upper-left-about-to-cycle. */ )
         if ( /* facing-wall */ )
            /* Turn 90° clockwise. */
         else {
            /* Step forward. */
            /* Turn 90° counterclockwise. */
            }
      _________
   /* Output the direct path found, or “unreachable” if there is none.
      Output format: TBD. */

8

Having now completed the loop body and its termination, we turn to (3) initializa-
tion. The problem statement dictates that we start in the upper-left cell. We establish 
the loop invariant (facing a wall-segment-surface-or-door) by facing up:

/* Find path in maze from upper-left to lower-right, if one exists. */
   /* Input a maze of arbitrary size, or output “malformed input” and
      stop if the input is improper. Input format: TBD. */
   /* Compute a direct path through the maze, if one exists. */
      /* Start in upper-left cell, facing up. */
      while ( /* !in-lower-right && !in-upper-left-about-to-cycle */ )
         if ( /* facing-wall */ )
            /* Turn 90° clockwise. */
         else {
            /* Step forward. */
            /* Turn 90° counterclockwise. */
            }
      _________
   /* Output the direct path found, or “unreachable” if there is none.
      Output format: TBD. */

9

To see that starting out facing an outside wall is a critical requirement for the algo-
rithm to work, consider starting in the upper-left cell facing down in the maze shown. 
We would go around and around the unreachable (blue) cell counterclockwise. 
Starting out by facing up establishes the invariant that we face an outer wall.

It is interesting to note that the sufficiency of the invariant that we face a wall-
segment-surface-or-door relies critically on a restriction given in the problem 
statement: A solid wall surrounds the entire grid of cells. Consider what would hap-
pen if we were to start, facing up, in a maze that has two exterior walls removed. We 
would go round and round counterclockwise, sometimes in the maze, and some-
times outside it. In a sense, the distinction between inside and outside has been 
destroyed, and we are trapped on an island of walls, not unlike the previous example. 
Our algorithm wouldn’t work at all. 

Thinking a little more deeply, we realize that an essential aspect of our invariant 
is that the wall-segment-surface-or-door we face must be “connected” to an inte-
rior surface of the lower-right cell (if it is reachable). In particular, we must never 
switch our orientation to a “disconnected island” because doing so would strand us. 

781
62
543

5 4 3
6 1 2
7 8

1 2 3 4 5
16 6
15 7
14 8
13 12 11 10 9



Extended Example: Running a Maze · 93

Of course, a consequence of remaining in touch with the peripheral wall (even if via 
a door) is that we will never reach disconnected goal cells, were the problem setup 
changed to allow them (see the placement of the cheese in the figure).

There is a little more to say about termination when the lower-right cell is unreach-
able. Specifically, what do we mean by “in-upper-left-about-to-cycle”? As we have 
seen, Example 4 requires passing through the upper-left cell in the middle of a sys-
tematic exploration along the way to finding a solution, so this condition is not merely 
that you have returned to the upper-left cell.55 Correct treatment of termination 
requires understanding that states in the exploration state space include both the 
identity of the cell you are in, and your orientation. The initial state is ⟨upper-left,up⟩, 
and the final state is ⟨upper-left,left⟩, and failure to prevent transition from the final 
state back to the initial state (yellow) would result in an unending orbit in state space, 
and an infinite loop in the code, i.e., nontermination.

There is nothing to do for (4) finalization, which turns on a somewhat subtle 
point: At the given level of detail, the loop body only computes the next cell state 
of a path. Suppose, however, that an additional computation were required at each 
state reached, e.g., say, we wanted to output some state information before moving 
on. Because the final state (be it in the lower-right cell or the upper-left cell) does 
not get to be processed in the loop body, such processing would have to be done for 
the final state in the finalization code.

There is nothing to do for (5) boundary conditions. We may review the degener-
ate case of a 1-by-1 maze, but find nothing special about it.

We have introduced three primitive actions (Turn 90° clockwise, Turn 90° counter-
clockwise, and Step Forward), and three primitive queries (facing-wall, in-lower-right, 
and in-upper-left-about-to-cycle), and defined the algorithm in terms of them. We 
are far from finished, but are well on our way toward a solution.

Original variant and invariant, reconsidered
Suppose that we had insisted on sticking with the original invariant in which we 
never take our left hand off a wall-segment-surface, and the original variant, in 
which we get one wall-segment-surface closer on each iteration. We could still 
have used micro-steps. In particular, the body of the (outer) loop could have been 
implemented with an inner loop, as follows:

while ( condition ) {
   /* Get one wall-segment-surface closer. */
      /* Turn 90° clockwise. */
      /* Advance to facing a wall, if necessary. */
         while ( /* !facing-wall */ ) {
            /* Step forward. */
            /* Turn 90° counterclockwise. */
            }
   }

In other words, within the body of the (outer) loop, we are permitted to temporar-
ily break its invariant, provided the invariant is reestablished by completion of the 
body of that (outer) loop.56

55. Another reason this would be incorrect is that we start in the upper-left cell, so such a 
condition would prevent us from getting started in the first place. 
56. An astute reader will recognize that even in the one-loop version of the code, the invariant 

or
ie

nt
at

io
n

cell

initial
statefinal

state



94 · Stepwise Refinement

This contrasting, more complicated, code illustrates several worthwhile princi-
ples:

• Choice of variant and invariant influence code complexity. Be on the lookout 
for choices of variant and invariant that simplify your code. In this example, 
retaining the first invariant that came to mind (keep your hand on a wall-seg-
ment-surface) would have led to more complicated code with nested loops, 
while weakening the invariant (keep your hand on a wall-segment-surface-
or-door) led to simpler code with only one loop.

• Expressing special-purpose composite operations (e.g., sidestep) in terms 
of a sequence of general-purpose micro-operations (e.g., Turn 90° clock-
wise, Step forward, and Turn 90° counterclockwise) may be advantageous. 
Micro-operations can be simpler to write, and may have multiple applications. 
Definition and use of micro-operations goes hand in hand with simpler conditions 
(e.g., facing-wall), as opposed to composite conditions (e.g., facing-normal-wall) 
that may be cumbersome to write (i.e., a wall that is collinear with another wall, 
with no perpendicular wall between them).

We return to complete the maze problem in Chapter 15.

(hand on wall-segment-surface-or-door) may be temporarily broken when we step forward, 
but is then immediately restored by turning counterclockwise.



95

ChAPTER 5  
Online Algorithms

Suppose you have an unbounded amount of input data and wish to process it. One 
possible strategy would be to follow the offline-computation pattern, which suggests 
that you read all data into program variables before you start processing them:

/* Input. */
/* Compute. */
/* Output. */

This may work well for small files, but for a massive amount of data the approach 
runs the risk that there is insufficient computer memory to store all data in program 
variables. The key word in the problem statement is “unbounded”, and this require-
ment rules out the offline-computation pattern.57

Some problems lend themselves to online computation in which each input value 
is read, processed, and discarded. A pattern for this is:

v = /* first input value */;
/* Initialize. */
while ( v != /* stoppingValue */ ) {
   /* Process v. */
   v = /* next input value */;
   }
/* Finalize. */

where stoppingValue is some distinguished input value that signals the end of mean-
ingful data. The pattern handles the case of no meaningful data, i.e., the degenerate 
case where the only value in the input is the stoppingValue.58

57. In modern computer systems, programs run in virtual memory (p. 31), which is essen-
tially unlimited. Thus, the issue isn’t really limited memory; rather, it is the efficiency of the 
paging mechanism that implements virtual memory. 
58. The online-computation pattern can be seen as an instance of the general iterative-
computation pattern:

/* Initialize. */ 
while ( /* not finished */ ) {
   /* Compute. */
   /* Go on to next. */
   }

where /* not finished */ is a check for not having reached the input stoppingValue, and /* Go 
on to next. */ reads the next input value. This is then followed by finalization.



96 · Online Algorithms

The key to online computation is that whatever is important about each input 
value can somehow be taken into account in summary program variables or output 
before the value is discarded. A problem that lends itself to online computation can 
perform a computation incrementally as the data are read in, and then compute a final 
result (if any) from those incrementally-maintained summary variables after all data 
have been individually processed.

An online algorithm nicely illustrates loop-invariants because the state of the 
program variables after some (but perhaps not all) of the values have been read in 
and processed must reflect an invariant, and processing each subsequent input value 
must maintain that invariant. Online computation is possible precisely because there 
is sufficient information in intermediate program variables for the needed final result 
to be computed and output. The nature of that information is what the invariant is 
all about.

The examples in this chapter assume that the data to be processed are nonneg-
ative integers, and the stoppingValue is -1. Thus, the online-computation pattern 
specializes to:

int v = in.nextInt();  // Next integer to be processed, or -1.
/* Initialize. */
while ( v != -1 ) {
   /* Process v. */
   v = in.nextInt();
   }
/* Finalize. */

The pattern is parametric in three aspects: initialization, per-datum processing, and 
finalization. As a device in the text for emphasizing this viewpoint, we label the 
parameters α, β, and γ, and subsequently define those parameters for each example:

int v = in.nextInt();  // Next integer to be processed, or -1.
/* α: Initialize. */
while ( v != -1 ) {
   /* β: Process v. */
   v = in.nextInt();
   }
/* γ: Finalize. */

Note that because initialization at α follows input of the first value, it can depend 
on that value.

Data Processing
Consider the application of processing exam grades. Each grade is an integer in the 
range 0-100, but the number of grades is unbounded. There may be no grades, or 
there may be a million grades. We further specialize the pattern for the application 
at hand:

int grade = in.nextInt();  // Next grade to be processed, or -1.
/* α: Initialize. */
while ( grade != -1 ) {
   /* β: Process grade. */
   grade = in.nextInt();
   }
/* γ: Finalize. */



Data Processing · 97

We consider five grade-processing applications: print, count, average, highest, and 
grade distribution, which provide simple settings in which to gain experience in 
thinking about invariants. 

Print
The simplest application is to print all grades in the input. There is no need for ini-
tialization, finalization, or intermediate computed values. We just print the value 
contained in variable grade:

β: System.out.println( grade );

The loop invariant states that on reaching β all grades previously input (except for 
the current one) have been output, and the most recent value input (either a grade 
or -1) is in variable grade:

previous grades current value remaining grades -1
input cursor

previous grades current value
input output variables

grade

If the current value in variable grade is an actual grade (i.e., not -1), the loop body 
executes: It maintains the invariant by printing grade, and then reading the next 
input value. The online-computation pattern guarantees termination because exe-
cution of the loop body reduces the loop variant by 1 (i.e., the number of values 
remaining in the input before the stopping signal).

The diagrammatic depiction of the loop invariant shows the general case, but it 
is important to realize that various labeled sections may, in general, be empty. For 
example, the regions labeled “previous grades” may be "all grades", in which case: (a) 
the input cursor is really beyond the -1, (b) the “current value” is really one and the 
same as the -1, and (c) the region labeled “remaining grades” is empty:

all grades -1 all grades -1
input output variables

grade
input cursor

This is the loop invariant at the moment that the loop terminates, i.e., on reaching γ. 
You can read the correctness of the program right off the diagram.

At the opposite extreme, the region labeled “previous grades” is empty, in which 
case: (a) the value in grade is the first value of the input, (b) all grades except that 
initial value lie ahead of the input cursor, and (c) nothing has been output yet:

current value remaining grades -1 nothing current value
input output variables

grade
input cursor

This is the loop invariant immediately after initialization at α, before any grades have 
been processed.

And finally, the degenerate case where “previous grades” is empty, and “current 
value” is the -1:

-1 nothing -1
input output variables

grade
input cursor

This is the loop invariant immediately after initialization at α, and also immediately 
prior to finalization at γ, when there are no grades in the input at all.



98 · Online Algorithms

Count
Let’s say you want to output how many people took the exam. Begin a mental exer-
cise of determining the program output for sample input data, and observe what you 
are keeping track of in your head as you scan the input from left to right: The num-
ber of grades counted so far. Following the precept:

☞ Introduce program variables whose values describe “state”.

it is clear that you need a declaration akin to:

int count; // The number of grades processed so far.

The comment is a simple example of a representation invariant, i.e., an assertion that 
precisely characterizes the value in the variable count at all times.

☞ Write the representation invariant of an individual variable as an end-
of-line comment.

Next, ask yourself: What does it mean to process a grade for this particular appli-
cation, because this is what you must do at β? Clearly, you must count it:

β: count++;

At α, how many grades have been processed so far? Yes, you have already read in the 
first input value, which may be a grade or may be the -1, but you haven’t processed 
it yet. That is what happens at β. So, at α you haven’t processed any grades yet:

α: int count = 0; // The number of grades processed so far.

Execution doesn’t reach γ until grade is equal to -1, i.e., until we have processed all 
grades. Thus, at γ, the value of variable count (the number of grades processed so 
far) is the total number of grades in the input:

γ: System.out.println( count );

You probably could have written this code in your sleep without all the method-
ological verbiage. However, our purpose has been to illustrate the methodology and 
show careful thought processes in an exceedingly simple setting. 

The overarching precept that has controlled the order of coding is:

☞ Code iterations in the following order: (1) body, (2) termination, 
(3) initialization, (4) finalization, (5) boundary conditions.

The online-computation pattern takes care of termination from the get-go, and no 
boundary condition arose that needed to be addressed. Thus, steps (2) and (5) were 
obviated, and we first coded β (body), then α (initialization), and then γ (finaliza-
tion), in that order. 

In each case, we used the representation invariants (first for grade, and then 
for count) to reason about what code to write, and why it is correct. That’s why we 
wrote the representation invariants in the first place. 



Data Processing · 99

We are developing code for pattern parameters α, β, and γ in isolation rather than 
in place (in the pattern instance itself) to emphasize the importance of thinking about 
them in terms of their roles in the parametric, general-purpose scheme: initialize, pro-
cess, finalize. Typically, you would develop such code in place, but mentally zoom in 
to each of β, α, and γ, in turn, as if you were wearing blinders.

Average
We want the program to output the average grade. Imagine scanning the input data 
yourself so you can output the average. If you are thinking about writing down the 
grades on a sheet of paper so that you can then add up the full list and divide that 
sum by the count, you are missing the point. You are inadvertently slipping into an 
offline algorithm that requires access to each and every grade, potentially millions of 
them, before doing the addition. What is needed for the online algorithm is a run-
ning sum of the grades seen so far. That way you can discard the grades themselves 
as you read through them. This suggests the declarations:

int count;    // The number of grades processed so far.
int sum;      // The sum of the grades processed so far.

At β, where we process each grade in preparation for reading in the next one, we 
must maintain the representation invariants:

β: count++; sum = sum + grade;

At α, before any grades have been processed, the sum of the grades processed so far is 0. 
Why 0? So that when we process the first grade, sum will be replaced by sum+grade, 
i.e., 0+grade, which will be the first grade itself.59

α: int count = 0; // The number of grades processed so far.
   int sum = 0;   // The sum of the grades processed so far.

At γ, we can print the average:60

γ: System.out.println( sum/count );

The five-step coding order for loops that we advocate defers consideration of 
boundary conditions until last, but that time has now come:

☞ Boundary conditions. Dead last, but don’t forget them.

What are they, where do you find them, how do you deal with them, and why do we 
defer them until last? 

What are they? Boundary conditions are situations in which general-purpose code 
does not apply, and special handling is required. 

59. Technically, 0 is called the identity with respect to “+”, i.e., a value e with the property 
that for any x, e+x is x.
60.  When both operands of division (/) are int, the quotient is int, and any fractional part 
is truncated. Thus, this code prints the integer part of the average. If the average with a frac-
tional part is wanted, the expression can be written as (float)sum/count, which converts 
sum to a float, and then divides it by count. This produces a float quotient.



100 · Online Algorithms

Where are they found?

☞ Find boundary conditions at extrema, and at singularities, e.g., biggest, 
smallest, 0, edges, etc.

First, let’s consider the extrema of possible grades: 0 and 100. All that we are doing is 
adding grade to sum, and nothing about a grade of 0 or 100 is special. An unbounded 
number of grades in the input raises the possibility of an arithmetic overflow, i.e., the 
magnitude of sum could get too large to be contained in 32-bits, but this is typically 
considered an exception rather than a boundary condition. So, we ignore the possi-
bility of a trillion grades in the input.61 But what about the other extreme of input-file 
size: no grades at all. This is a problem because 0/0 is not defined, and if this com-
putation occurs, it will cause the program execution to crash.

How do you deal with them? Typically, a Case Analysis is performed to detect a 
boundary condition by inspection of the values of variables. The present situation 
is straightforward:

γ′: if ( count==0 ) System.out.println( "no grades" );
    else System.out.println( sum/count );

Why deferred? We defined a boundary condition as a situation in which general-pur-
pose code does not apply. We may identify a potential special case early, but in advance 
of actually coding the general case, it is not possible to know whether or not the spe-
cial case is an actual boundary condition requiring special handling. Often, the code 
for the general case happens to handle the special case. Another possibility is that 
the code for the general case can be slightly modified so that it handles the special 
case gracefully, i.e., without special attention. Because of these possibilities, there is 
no point in worrying about boundary conditions early.

Highest grade
Computing the highest grade offers only one small additional idea. Nonetheless, we 
shall run through the development in the correct methodological order. 

The online algorithm requires a variable to keep track of the highest grade pro-
cessed so far:

int highest;   // The highest grade processed so far.

Processing the current grade requires updating highest before we discard the grade 
and read the next input value:

β: if ( grade>highest ) highest = grade;

or alternatively:

β′: highest = Math.max(highest, grade);

Before any grade has been processed, what is the highest grade that has been pro-
cessed so far? The correct answer is not 0 because we must distinguish this situation 

61. If we are concerned, we could buy ourselves some headroom by changing the type of 
sum from int to long.



Data Processing · 101

(no grades processed so far) from the one in which every single grade (input so far) 
is 0, and therefore the highest grade (so far) is 0. 

What is needed for an initial value of highest is some value that is guaranteed 
to be smaller than the first grade processed. That way, after processing the first grade, 
highest will be that grade. Any negative value will do (since grades are in the range 
0-100):

α: int highest = -1;  // The highest grade processed so far, or -1 if no
                      // grades processed yet.

We can then use the value of highest to test the boundary condition, i.e., if there 
were no grades:

γ: if ( highest==-1 ) System.out.println( "no grades" );
   else System.out.println( highest );

Suppose grades could be any (signed) integer that can be represented as an int, 
including negative numbers.62 How then would we initialize highest? We need a 
number that is smaller than any possible grade, but there is no such int. Given that 
initialization follows the reading (but not the processing) of the first grade, we can 
use it to initialize highest:

α′: int highest = grade;  // The highest grade processed so far, or first
                          // value in input if no grades processed yet.

but then the test for no grades in the input must be changed to use some other method 
of detection, e.g., an explicit count.63

Grade Distribution
We want the program output to be the grade distribution, i.e., for each grade between 
0 and 100, we want to know the number of people who obtained that grade. The prob-
lem is like counting the total number of grades, but instead of one variable, count, 
we need 101 counters, freq[0..100]. We can declare these counters all in one fell 
swoop as the array freq, together with their representation invariant:

α: /* For 0≤k≤100, freq[k] is the number of grades of k processed so far. */
      int freq[] = new int[101];

Since each element of the array is initialized to zero, the default value for int vari-
ables, the representation invariant for freq is satisfied from the get-go, i.e., before 
any grades have been processed.

The array freq is known as a histogram, and the individual elements of the array 
are known as bins. Creating a histogram for a collection of values is often very useful, 
not just for statistical analysis, but as a general programming technique.64

62. We shall ignore the issue that the stoppingValue of -1 would now be a legal grade.
63. What is needed is an identity with respect to “max”, i.e., a value e with the property that 
for any x, e max x is x. That value is -∞, but there is no such value in a computer. One can’t use 

-231, the most negative int, because that still doesn’t allow us to distinguish between no input 
and the maximal grade being -231. One could declare highest to be a long variable, and ini-
tialize it with -263, which is effectively -∞ with respect to grades of type int. 
64. Chapter 12 Collections uses histograms to represent a multiset that consists of natural 

0 1 2 ··· 99 100
freq ···



102 · Online Algorithms

The coding step at β must maintain the representation invariant of freq as each 
grade is processed:

β: freq[grade]++;

That is, we increment the counter associated with the value of grade. If any input is 
outside the range 0 through 100, this statement will crash with a “subscript-out-of-
bounds” error, but we assume for simplicity that the input data are well formed.

Clearly, we can only output the grade distribution when we reach finalization:

γ: System.out.println( "grade frequency" );
   for (int g=0; g<101; g++) System.out.println( g + "      " + freq[g]);

Said more technically (and a bit pedantically): On reaching γ, the representation 
invariant for freq effectively states that it contains the grade distribution because 
at γ all grades have been processed. 

Print in reverse order
The prototypical application that is not amenable to online computation is: Print 
the grades in reverse order. What can we possibly do with the first value other than 
save it for printing last? And similarly, we have to save the second value read so we 
can print it second to last. Etc. All we can do at β is save grade in a program vari-
able so it can be printed later after all grades have been read in. The entire collection 
of such variables is a data structure. Because there is no upper bound on the num-
ber of grades in the input, the number of variables in the data structure must also be 
unbounded. In effect, our online-computation pattern degenerates into the Input-
Compute-Output steps of the offline pattern:

/* Input. Read all grades and enter them into a data structure. */
   int grade = in.nextInt();  // Next grade to be processed, or -1.
   /* α: Initialize a data structure for saving all grades. */
   while ( grade != -1 ) {
      /* β: Process grade by saving it in the data structure. */
      grade = in.nextInt();
      }
   /* γ: Finalize the data structure. */
/* Compute. Empty. */
/* Output the grades stored in the data structure in reverse order. */

A recursive method offers an alternative to the three-part offline-computation pat-
tern for this problem because each recursive invocation of a method creates a new 
instance of each of the method's local variables, e.g., grade:

/* Read grades up to -1, and then print them in reverse order. */
void readRest() {
   int grade = in.nextInt();  // Next grade read in, or -1.
   if ( grade != -1 ) {
      readRest();
      System.out.println( grade );
      }
   }

numbers in a limited range of values. It then generalizes them to implement hash tables, which 
can represent a multiset of arbitrary values.



Data Compression · 103

Data Compression
Data compression is an important data-processing application that is amenable to 
online computation: Given an arbitrary file, we wish to make it shorter (by encod-
ing  it) in such a way that we can recover the original file perfectly (by decoding it). 
Data compression leverages redundancies in the input file to find a more succinct 
representation of the sequence of values. For example, compression of a digital 
image might leverage the common occurrence that neighboring pixels in an image 
are highly likely to have the same color.

General purpose compression algorithms can find many forms of redundancy 
automatically. One of the simplest examples of data compression is run encoding.

Background. Consider a sequence consisting of any number of nonnegative 
integers, followed by a stopping value of -1. For example:

10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 - 1

A maximally-long subsequence of repeated values is called a run. For example, the 
sequence above consists of runs of:

6 tens, 8 ones, 3 sevens, 1 eight, 1 nine, and 3 tens.

When a sequence is known to consist of many long runs, it may be more efficient to 
represent each run by two integers: The value and the number of repetitions of that 
value. This representation is called a run encoding of the sequence. For example, the 
run encoding of the sample sequence is:

10 6 1 8 7 3 8 1 9 1 10 3 - 1 - 1

We duplicate the stopping value of -1 at the end of the run-encoded sequence, as 
shown above, for the convenience of the decoder, which reads pairs if integers, and 
converts them back to a normal sequence of integers, terminated by a single -1.

Problem Statement. Write a program segment that does online run encoding 
of an input sequence of integers, as described. Write another program segment that 
does online run decoding, i.e., takes a run-encoded input, and converts it back to 
the original.

Encoding 
Begin a solution with its specification:

/* Given 0 or more nonnegative inputs followed by a stopping signal of -1,
   output the equivalent run-encoded sequence followed by -1 -1. */

1

After making sure you understand the problem and the sample output provided, the 
first thing to do is recognize that the problem requires online computation because 
no upper bound has been given for the length of the input: 

☞ Decide between an on-line vs off-line algorithm, e.g., processing data 
incrementally as it is input vs inputting all data, storing it in variables, 
and processing it thereafter..



104 · Online Algorithms

Having completely mastered the online-computation pattern, you blast it in, leaving 
space for α, β, and γ, and choosing v as the name of the variable holding the input:

/* Given 0 or more nonnegative inputs followed by a stopping signal of -1,
   output the equivalent run-encoded sequence followed by -1 -1. */
   int v = in.nextInt();  // Next integer to be processed, or -1.
   α
   while ( v != -1 ) {
      β
      v = in.nextInt();
      }
   γ

2

Explicit placeholders α, β, and γ are shown in the development snapshot above, but 
in practice you might leave blank lines in the code.

The online-computation pattern contains a loop, and as with any loop there are 
two things to consider: termination (using the loop variant), and correctness (using 
the loop invariant). 

• Variant. This is clearly the number of input values (other than -1) that remain to 
be processed. The online-computation pattern guarantees this will be reduced 
by one on each iteration. Accordingly, there is nothing further to say about it, 
provided we don’t inadvertently write code at β that somehow breaks termi-
nation.

• Invariant. This remains for us to discover. It will be established by initialization at 
α, and will be maintained by the combination of code at β, and the statement

v = in.nextInt();

that is built into the body of the loop of the online-computation pattern. 
As with any iteration, the order of coding is given by the precept:

☞ Code iterations in the following order: (1) body, (2) termination, 
(3) initialization, (4) finalization, (5) boundary conditions.

Accordingly, we start thinking about the body of the loop first. But there is no point 
in starting to code before we know what the invariant is because the whole objective 
of β (followed by the input statement) is to maintain that invariant.

 As we have seen previously, a systematic way to discover loop invariants is to 
follow this rule:

☞ Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the 
“program state” when the music stops, i.e., at the instant the loop-body is 
about to execute yet again. If you had stopped one iteration later, what 
would have looked the same (the “loop invariant”), and what would have 
changed (the “loop variant”)?

“A diagram is worth a thousand words”, so begin with sample input data, and augment 
it with diagrammatic details. A good place to start is with a red line at an arbitrary 
location to indicate how far the program had gotten in processing input before the 
music stopped:



Data Compression · 105

10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 - 1

Although the line position is described as “arbitrary”, it is actually far from it; rather, 
it was chosen with considerable care, and not at all randomly. We deliberately chose 
to not pick a place in the middle of either run of 10s, reasoning that there may be 
something special about being the first or last run that is best to avoid for now. We 
could have picked the runs of 8s or 9s, but as runs of length one, they seem more 
like special cases to be checked later; they are not the “normal case”. The run of 7s 
might have been fine, but seemed a tad too short to represent the general case. So, we 
picked the run of 1s for the red line. But where in that run? Surely, not at the begin-
ning or end because these are again potential special cases. We picked somewhere 
in the middle, sufficiently far from the first or last 1. As we have illustrated, there is 
some skill in picking an “arbitrary” point at which to “stop the music”, but it is not 
difficult to develop.

The red line is a boundary between what has been considered in the past, and 
what will be considered in the future. Such a boundary is (almost) always associated 
with a variable that records an essential aspect of the state of the computation:

☞ Introduce program variables whose values describe “state”.

In this case, the boundary is immediately in front of the next input value to be 
processed. In association with the online-computation pattern, we had already cho-
sen variable v to hold that value, so we add an indication of it to the diagram. The 
standard depiction of a variable is a box with an adjacent name, so, the diagram is 
modified, thus:

v
10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 - 1

Reflecting on what other boundaries may be important, we consider the first and 
last 1 in the current run. The last 1 is in the future, so we have no basis for recording 
anything about it, but the first 1 is a different matter. We have seen it, and can know 
that it is the first value in a run. Accordingly, we draw in another boundary there, and 
invent a variable, r, to hold that value:

r v
10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 - 1

A run is defined as a “maximally-long subsequence of repeated values”, and the full 
run is not known at this time. We do, however, know that it is a run of r values. 

You may never have thought about runs before, and will benefit from defining 
concepts to help you think about them. Language is a powerful aid to understand-
ing, and words matter:

☞ Invent (or learn) vocabulary for concepts that arise in a problem.

We have only seen an initial subsequence of a full run. A word for that idea might 
help. How about the noun “prefix”? A prefix is something that comes first, and that 
is what we have between the two red lines: A prefix of a run. It could be the whole 

valuename



106 · Online Algorithms

run, or it could be a proper prefix, i.e., not the full run. We don’t know which, and 
won’t know until seeing a subsequent input that is not the same as r. It is useful to 
learn and use established words for concepts, and Google Search is a powerful tool 
for discovering them. However, it is far more important that you identify relevant 
concepts, and name them (in words of your own invention, if necessary) so that you 
can think and talk about them.

Introduce another variable, n, for the length of the prefix currently in hand. Add 
n to the diagram, omitting the box for the variable, i.e., write n over a double-arrow 
that indicates the length of the prefix, and adopt the convention that merely writing 
it there signifies that there is such a variable, and that its contents is the length. In 
this case, n would contain 5:

r v
10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 - 1

n

Visual language is also a powerful aid to understanding, and pictures matter:

☞ Invent (or learn) diagrammatic ways to express concepts.

As with vocabulary, there are established pictorial conventions, but invent your own, 
if necessary.

Now ask yourself: What would have happened if the music had stopped one 
iteration later? Variable r would be the same, n would be one larger, and the right 
boundary would still be to the right of a 1 in the run, one 1 later: 

r v
10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 - 1

n

The two diagrams are essentially the same, except for the minor detail that the scanned 
prefix of 1s is now one longer. This observation is a clue that we are close to identi-
fying the loop invariant.

What would the diagram have looked like if the music had stopped a few itera-
tions later?

r v
10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 - 1

n

Again, similar. Variable r would remain the same, n would be even larger, and the 
right boundary would still be to the right of a 1. But this case is quite different. This 
time, the contents of v is 7, not 1. This is the precise moment when the end of a run 
is detected. 

The loop invariant is implicit in these diagrams, but is obscured by their concrete-
ness, i.e., they show too many specific details. The invariant must be stated for the 
general case, and therefore it is better to draw abstract, schematic diagrams that omit 
details. The details of the concrete diagrams devised so far were useful for teasing 
out aspects of the invariant, but we now switch to a schematic diagram that pictori-
ally characterizes regions of interest between boundary lines:

r v
runs already output a (partial) run of r’s ? -1

n



Data Compression · 107

The diagram states that the input consists of three regions: The runs that have already 
been output, the prefix of a run currently being processed, and an unknown region. 
In interpreting the diagram, you must understand the convention that any of the 
identified regions may be empty. Specifically, in this case:

• No runs may have been output, i.e., r could be the very first value in the input.
• The value in v could equal or not equal r, i.e., we could be in the middle of a 

run, or beyond the right end of a complete run of r’s.
• There may be no unknown and unprocessed values (labeled “?”), i.e., the run 

of r’s could be the very last run, and the “?” region could be empty. In this case, 
v would be -1.

• There may be no runs at all, in which case both r and v would be -1, and there 
would be no values other than the -1.

The diagram states the invariant pictorially, and can be read in words as:

Zero or more runs have been output. We have scanned a run prefix of r’s of 
length n≥0, and have read v, the next input integer after that prefix.

This paragraph is the textual form of the loop invariant.
We can now write declarations for the variables mentioned in the invariant. End-of-

line comments are used to express the role each variable plays, but the initializations 
are deferred until later:

/* Given 0 or more nonnegative inputs followed by a stopping signal of -1,
   output the equivalent run-encoded sequence followed by -1 -1. */
   int v = in.nextInt();  // Next integer to be processed, or -1.
   int r = ____;  // The run prefix is of r values.
   int n = ____;  // The processed prefix has length n.
   while ( v != -1 ) {
      β
      v = in.nextInt();
      }
   γ

3

Armed with the explicit picture (or statement) of the loop invariant, we now 
approach the question: How is the invariant to be maintained while making prog-
ress through the input?

Our analysis revealed a key distinction between two situations: The middle of a 
run, and the end of a run. Accordingly, we refine the body of the loop with a Case 
Analysis:

/* Given 0 or more nonnegative inputs followed by a stopping signal of -1,
   output the equivalent run-encoded sequence followed by -1 -1. */
   int v = in.nextInt();  // Next integer to be processed, or -1.
   int r = ____;  // The run prefix is of r values.
   int n = ____;  // The processed prefix has length n.
   while ( v != -1 ) {
      if ( ______ ) ______________
      else ______________
      v = in.nextInt();
      }
   γ

4



108 · Online Algorithms

What exactly is it that distinguishes the two cases? A comparison between r and v. 
In the first case, they are the same, and in the second they are different:

/* Given 0 or more nonnegative inputs followed by a stopping signal of -1,
   output the equivalent run-encoded sequence followed by -1 -1. */
   int v = in.nextInt();  // Next integer to be processed, or -1.
   int r = ____;  // The run prefix is of r values.
   int n = ____;  // The processed prefix has length n.
   while ( v != -1 ) {
      if ( v==r ) ______________
      else ______________
      v = in.nextInt();
      }
   γ

5

The first case corresponds to having “stopped the music” in the middle of a run. The 
value in v must be incorporated logically into the run prefix, which we can do by 
incrementing n by 1 (and then subsequently reading the next input integer):

/* Given 0 or more nonnegative inputs followed by a stopping signal of -1,
   output the equivalent run-encoded sequence followed by -1 -1. */
   int v = in.nextInt();  // Next integer to be processed, or -1.
   int r = ____;  // The run prefix is of r values.
   int n = ____;  // The processed prefix has length n.
   while ( v != -1 ) {
      if ( v==r ) n++;
      else ______________
      v = in.nextInt();
      }
   γ

6

You can confirm that in the case v equal to r, the loop invariant is maintained.
In the second case, at the end of the run, we can emit the output pair because we 

now know that its length is n:

/* Given 0 or more nonnegative inputs followed by a stopping signal of -1,
   output the equivalent run-encoded sequence followed by -1 -1. */
   int v = in.nextInt();  // Next integer to be processed, or -1.
   int r = ____;  // The run prefix is of r values.
   int n = ____;  // The processed prefix has length n.
   while ( v != -1 ) {
      if ( v==r ) n++;
      else {
         System.out.print( r + " " + n " " );
         }
      v = in.nextInt();
      }
   γ

7

Outputting the run effectively incorporates it into the region of already-output runs 
(to the left of the left boundary), which we can reflect by moving the left boundary 
line to the right of that run, i.e., by setting r to v. The input statement built into the 
online-computation pattern will then advance the right boundary line (and v) to the 
right of r, effectively incorporating it as the sole value in a new prefix of length 1:



Data Compression · 109

/* Given 0 or more nonnegative inputs followed by a stopping signal of -1,
   output the equivalent run-encoded sequence followed by -1 -1. */
   int v = in.nextInt();  // Next integer to be processed, or -1.
   int r = ____;  // The run prefix is of r values.
   int n = ____;  // The processed prefix has length n.
   while ( v != -1 ) {
      if ( v==r ) n++;
      else {
         System.out.print( r + " " + n " " );
         r = v; n = 1;
         }
      v = in.nextInt();
      }
   γ

8

You can confirm that in the case of v not equal to r, the loop invariant is preserved.
This step completes the coding of the loop body. We have established that in both 

cases, it preserves the invariant. 
Coding the loop condition would normally come next, but it has already been 

coded as part of the online-computation pattern. Accordingly, we move on to the 
initialization:

☞ Initialization. Do 3rd. Initialize variables so that the loop invariant is 
established prior to the first iteration. Substitute those initial values 
into the invariant, and bench check the first iteration with respect to 
that initial instantiation of the invariant.

Clearly, the first run is a run of whatever value is in v, so set r to v. But what is the 
length of the run prefix? Specifically, should we set n to 0 or to 1? The value in v has 
not yet been processed (the body of the loop does that), so the run is initially a run 
of zero r’s. We are in a degenerate situation: The run prefix is a run of a known value 
(r), but none have been processed so far. The first time the loop body executes, it 
will observe that v is equal to r, and increment n to be 1:

/* Given 0 or more nonnegative inputs followed by a stopping signal of -1,
   output the equivalent run-encoded sequence followed by -1 -1. */
   int v = in.nextInt();  // Next integer to be processed, or -1.
   int r = v;  // The run prefix is of r values.
   int n = 0;  // The processed prefix has length n.
   while ( v != -1 ) {
      if ( v==r ) n++;
      else {
         System.out.print( r + " " + n " " );
         r = v; n = 1;
         }
      v = in.nextInt();
      }
   γ

9

Thinking about degenerate situations like the above can make your head hurt. It 
was well worth deferring initialization until after the loop body was completed, and 
after the loop invariant was fully expressed and understood. Furthermore, the code 



110 · Online Algorithms

of the loop-body supports bench checking the initialization: After the first iteration, 
the following diagram holds:

r v
10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 - 1

n

which is readily seen as a special case of the general loop invariant. Were we to have 
initialized n to 1, the first iteration would have made it 2, which would have violated 
the invariant. This step completes the coding of the initialization.

We turn, now, to finalization. Referring to the schematic diagram, consider the 
case where the “?” region is empty, and v is -1:

r v

runs already output a (partial) run of r’s -1

n

Consider how this state arose, and realize that the previous iteration must have 
advanced the right boundary line to the right of the last run, which has not yet been 
output. Accordingly, it must be output now, in the finalization, together with the 

-1s:

/* Given 0 or more nonnegative inputs followed by a stopping signal of -1,
   output the equivalent run-encoded sequence followed by -1 -1. */
   int v = in.nextInt();  // Next integer to be processed, or -1.
   int r = v;  // The run prefix is of r values.
   int n = 0;  // The processed prefix has length n.
   while ( v != -1 ) {
      if ( v==r ) n++;
      else {
         System.out.print( r + " " + n " " );
         r = v; n = 1;
         }
      v = in.nextInt();
      }
   System.out.print( r + " " + n " " );
   System.out.println( "-1 -1" );

10

This step completes coding of the finalization.
We turn, now, to boundary conditions. The problem statement said the code must 

run correctly even when the only input is “-1”, i.e., no runs at all. Here you see clearly 
the advantage of having delayed consideration of the boundary condition until dead 
last: The structure of code for the general case has been completed, and can be used 
to reason about the special case: No input other than -1. Initialization will have set n 
to 0, and the loop will not have executed at all. The finalization code is reached, which 
normally outputs the last run. But the value of n indicates that there is no run. Or, if 
you delight in being pedantic, you could say that the “last run”, in this case, is “a run 
of length 0”, so be sure not to output it because there’s nothing there:



Data Compression · 111

/* Given 0 or more nonnegative inputs followed by a stopping signal of -1,
   output the equivalent run-encoded sequence followed by -1 -1. */
   int v = in.nextInt();  // Next integer to be processed, or -1.
   int r = v;  // The run prefix is of r values.
   int n = 0;  // The processed prefix has length n.
   while ( v != -1 ) {
      if ( v==r ) n++;
      else {
         System.out.print( r + " " + n " " );
         r = v; n = 1;
         }
      v = in.nextInt();
      }
   if ( n != 0 ) System.out.print( r + " " + n " " );
   System.out.println( "-1 -1" );

11

Are there any other boundary conditions that should be checked? Thinking back 
to the original game of musical chairs, when we chose an “arbitrary” place to stop 
the music, we were skittish about picking either the run of one 8 or one 9, think-
ing that these might be special cases. Perhaps our anxiety was warranted; perhaps 
it wasn’t. Best to bench-check the code for these cases. The run of 7s was output 
after the 8 was seen in v. We then set r to 8, n to 1, and read the next integer input, 
advancing v to 9:

r v
10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 - 1

n

On the very next iteration, the Case Analysis will detect the end of a run (of 8s) 
because v is not equal to r. So, the run of 8s (all one of them) is output, r is set to 
9, n is set to 1 (which it already was), and we read the next integer input, advanc-
ing v to 10:

r v
10 10 10 10 10 10 1 1 1 1 1 1 1 1 7 7 7 8 9 10 10 10 - 1

n

Once again, the very next iteration immediately outputs the run of one 9, and 
advances to the run of 10s. So, there is no problem. Runs of length one turn out to 
not be a special case.

This completes the code for the encoder. 

Decoding
The code for online run decoding is considerably simpler. It is presented for com-
pleteness, but presents only one small new idea: Reading input values in pairs:

/* Given zero or more pairs of integers ⟨r,n⟩, each pair representing a
   run encoding of n r’s, followed by the pair ⟨-1,-1⟩, output the
   decoding, followed by -1. */

1

Clearly this is again an opportunity to use the online-computation pattern, but only 
after modifying it to read pairs of values each time:



112 · Online Algorithms

/* Given zero or more pairs of integers ⟨r,n⟩, each pair representing a
   run encoding of n r’s, followed by the pair ⟨-1,-1⟩, output the
   decoding, followed by -1. */
   int r = in.nextInt();  // The run value currently being processed.
   int n = in.nextInt();  // The length of the current run.
   α
   while ( r != -1 ) {
      β
      r = in.nextInt();
      n = in.nextInt();
      }
   γ

2

Some might prefer to test both r and n for -1, but the code above suffices, and the 
extra test would be redundant, albeit arguably useful for detecting possible input 
format errors.

Write the body of the loop, blasting out the printing of n instance of r:

/* Given zero or more pairs of integers ⟨r,n⟩, each pair representing a
   run encoding of n r’s, followed by the pair ⟨-1,-1⟩, output the
   decoding, followed by -1. */
   int r = in.nextInt();  // The run value currently being processed.
   int n = in.nextInt();  // The length of the current run.
   α
   while ( r != -1 ) {
      for (int k=0; k<n; k++) System.out.print( r + " " );
      r = in.nextInt(); 
      n = in.nextInt();
      }
   γ

3

There is no initialization. Finalization prints -1, which completes implementation  
of the decoder:

/* Given zero or more pairs of integers ⟨r,n⟩, each pair representing a
   run encoding of n r’s, followed by the pair ⟨-1,-1⟩, output the
   decoding, followed by -1. */
   int r = in.nextInt();  // The run value currently being processed.
   int n = in.nextInt();  // The length of the current run.
   while ( r != -1 ) {
      for (int k=0; k<n; k++) System.out.print( r + " " );
      r = in.nextInt(); 
      n = in.nextInt();
      }
   System.out.println( -1 );

4



113

ChAPTER 6  
Enumeration Patterns

To enumerate is to list off, one by one. In application software, there are many things 
to enumerate: People, planets, toasters, etc. In the absence of any particular applica-
tion, we can focus on enumerating numbers and tuples of numbers, e.g., pairs, triples, 
etc., and thereby gain generality.

There are many forms of enumeration. For example, we may count forwards or 
backwards, by ones or by twos. Objects arranged two dimensionally can be listed in 
left-to-right reading order (English), in right-to-left reading order (Hebrew), or in 
top-to-bottom reading order (Chinese). 

Complete familiarity with various enumeration patterns, and with the code pat-
terns that implement them, is highly advantageous. First, enumeration patterns 
provide conceptual vocabulary for addressing problems. Second, once a needed enu-
meration has been identified, the corresponding code pattern can be blasted into a 
program by reflex, and without detailed thought.

For example, suppose you need to fill a 4-by-4 array with integers, as shown. You 
should aspire to responding instantly: I need to enumerate array cells in left-to-right 
reading order, and drop consecutive integers into place as I go. The code pattern 
known as row-major-order enumeration is perfect. Pow! I know how to count up 
from 1. Pow! Done.

This chapter covers a range of standard enumerations, and illustrates their use 
with appropriate examples.

Counting
Children learn to count: 1, 2, 3, etc. Computers can count, too:

int k = 1;
while ( true ) k++;

Counting is one of the simplest examples of iteration. Here, we enumerate the pos-
itive integers, using variable k.

Before long, children learn the concept of 0 and, with a certain sense of pride, can 
start counting from there:

int k = 0; 
while ( true ) k++;

Here, k runs through the natural numbers. 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16



114 · Enumeration Patterns

So-called 0-origin counting immediately creates linguistic confusion. Ask 0-origin 
counters what number they enumerated first, and the answer is 0, what number they 
enumerated second, and the answer is 1, etc. The good news is that some questions 
have more felicitous answers for 0-origin counters. Ask them how many times they 
incremented their counter, and the answer is k, i.e., whatever value is in the variable k. 
The shoe is on the other foot for 1-origin counters: Ask them how many times they 
incremented their counter, and the answer is k-1. 

Clearly, the counting pattern can be generalized:

int k = start;
while ( true ) k++;

whereupon the linguistic issues get a bit more complicated. Suppose s is the value 
of the expression start, and call such people “s-counters”. Assume s is nonnegative. 
Then the first number for an s-counter is s, and the number of times k has been incre-
mented is k-s.

The subtle difference between “what’s first?” questions and “how many?” questions 
is the source of much confusion, and contributes to notorious off-by-1 errors in pro-
gramming. Associate natural numbers with the N elements of an ordered collection 
of objects, and ask what number is associated with the last object? Answer: N-1.

Questions about “how many between?” and “distance between?” are another 
source of confusion and off-by-one errors. For example, how many integers are there 
inclusively between p and q? Answer: q-p+1. Ask what is the distance between x 
and x′ on the real number line? Answer: |x-x′|.

Keep in mind that such questions are fraught, and error rates are high even after 
decades of experience. Until you notice yourself rarely making off-by-one errors, it 
is best to be humble and always check yourself when you write expressions for such 
quantities. It is your choice whether to reason abstractly (with arbitrary variables), 
or concretely (with specific values for the variables). There’s no shame in doing the 
check because everyone makes mistakes. The appropriate aphorism is: An ounce of 
prevention is worth a pound of cure, where the cure is debugging.

Children learn the concept of infinity from counting. They learn that a google is a 
1 followed by a hundred 0s, and after that, there are still more numbers to count.

Alas, computers have only finite-precision numbers built in, and there is a larg-
est positive integer that can be stored in an int variable. So, what happens when 
the variable k in our counting code has reached that largest integer, and we attempt 
to increment it yet another time? It continues enumerating negative numbers back-
wards. What? That’s right!

The largest positive number that can be stored in an int variable is 231-1, and the 
next number after that is a representation of the most-negative negative number: -231. 
Signed numbers are represented in two’s-complement form, where half are nonnega-
tive, and the other half are negative. Our loops are indeed infinite, but k does not get 
arbitrarily large. Rather, k cycles clockwise through the ring of numbers depicted. 
The phenomenon whereby 231-1 is followed by -231 is called arithmetic overflow, and 
occurs silently on most computers, i.e., without any error indication.

Normally, we don’t worry about arithmetic overflow. If you are worried about 
it for your application, use long instead of int. The largest positive long value is 
263-1, which is not quite a google, but is getting closer.65

65. If 263-1 isn’t big enough, you can always use a bignum package, which represents a num-
ber’s digits in an array of int (or long) values. Addition of two integers (say, of A and B) is 

0

-231

:
:

:
:

-1
-2

231-2
231-1-231+1

-231+2

2
1



1-D Indeterminate Enumeration · 115

All good things must come to an end, and we must replace our infinite loops with 
finite ones:

int k = start;
while ( condition ) k++;

where condition determines how long to keep counting. Herein lies another pitfall: 
Confusion between “when to stop?” questions and “when to continue?” questions. 
Confuse the two, and you will easily say the opposite of what you intended. There is 
no common term for such mistakes (akin to “off-by-one” errors); perhaps we could 
call them “get it backwards” errors.

There are two forms of bounded counting: Indeterminate and determinate. In 
the first, you don’t know ahead of time how long you are going to keep counting; in 
the second, you do.

1-D Indeterminate Enumeration
Counting until you find an integer with a given property is called the 1-D indetermi-
nate-enumeration pattern:

/* Enumerate from start until !condition. */
   int k = start;
   while ( condition ) k++;

where condition is the negation of the property sought. 
In the case where the existence of an integer with the desired property is not guar-

anteed, but where it is known that no integer beyond a maximum has the property, 
the bound can be added to the condition: 

/* Enumerate from start until !condition, but no further than maximum. */
   int k = start;
   while ( k<=maximum && condition ) k++;

which will terminate either having found a k with the property sought, or with k 
equal to maximum+1. Subsequent code can use the value of k to easily distinguish 
between the two cases by checking whether k>maximum:

/* Enumerate from start until !condition, but no further than maximum. */
   int k = start;
   while ( k<=maximum && condition ) k++;
if ( k>maximum ) /* condition was true for all k in [start..maximum]. */
else /* k is smallest in [start..maximum] for which condition is false. */

Here is the reasoning: Upon termination of the iteration, if k is greater than maximum, 
it must have been incremented in the final iteration, and so, the condition when k was 
equal to maximum must have been true. Furthermore, it must have been true for 

performed by iterating over the elements of the arrays for the two operands (say, A[0..n-1] 
and B[0..n-1]) from right to left, as you learned in grade school. The difference is that each 

“digit” of a bignum can be one of the unsigned values between 0 and 232-1 (or 264-1). Now we’re 
getting close to infinity! Implementing bignum is a nice exercise, if you are looking for practice. 
Bignum is available in Java as BigInteger. Python’s integer variables are bignums by default.



116 · Enumeration Patterns

every previous iteration. Thus, the property sought, which is the negation of the con-
dition, didn’t hold for any integer between start and maximum, inclusive. Conversely, 
if k is not greater than maximum, the reason the iteration terminated must have been 
because the condition was false for some integer not greater than maximum. The value 
of k is that integer, and because we are iterating in order of increasing values, that 
k is the smallest integer greater than or equal to start with the desired property.

As given, the patterns enumerate ever larger integers. Clearly the direction of the 
enumeration can be reversed, and you can enumerate ever smaller integers:

/* Enumerate from start in the negative direction. */
   int k = start;
   while ( condition ) k--;

1-D Determinate Enumeration
Counting until you have enumerated some given number of integers is called the 
1-D determinate-enumeration pattern:

/* Do whatever n times. */
   int k = 0;
   while ( k<n ) {
      /* whatever */
      k++;
      }

In determinate enumeration, the enumeration range is known in advance. In some 
situations, it is already known when you are writing the program, even before it runs, 
e.g., if you write a constant instead of the variable n:

/* Do whatever 10 times. */
   int k = 0;
   while ( k<10 ) {
      /* whatever */
      k++;
      }

In other situations, the number of values enumerated is not known until the pro-
gram runs and control reaches the code with some particular value in n. In this case, 
we still say the enumeration is determinate rather than indeterminate. In fact, each 
time control reaches this iteration statement, n may contain a different value, and 
the enumeration range will be different, but we still call it determinate because the 
number of iterations is established before iteration commences.

As described in Chapters 1 and 2, determinate iteration is so common that pro-
gramming languages have an abbreviation for it:

/* Do whatever n times. */
   for (int k=0; k<n; k++) 
      /* whatever */

This code pattern does exactly the same thing as the determinate-iteration pat-
tern using a while-statement. Determinacy is a property of an enumeration that is 



1-D Determinate Enumeration · 117

independent of how you express it, i.e., using a for-statement, or using the while pat-
tern. The property is: The extent of the enumeration is known (each time) before it 
begins. Use of a for-statement makes it a little easier to identify determinativeness 
in code because you don’t need to look for the telltale while pattern.

Nothing (other than self-discipline) prevents you from altering the extent of a 
determinate iteration while it is executing. For example, you can write:

for (int k=0; k<n; k++) {
   /* whatever */
   if ( condition ) k = n;
   }

and thereby terminate the enumeration prematurely. Some programming languages 
even provide a special construct for “breaking out of a for-loop”. This practice is 
strongly discouraged. Specifically, if there is any reason why you must allow for the 
possibility that an enumeration may stop “in mid-stream”, you should use the inde-
terminate-iteration pattern, and express the exceptional circumstance up front:

k = 0;
while ( k<n && !condition ) {
   /* whatever */
   k++;
   }

Don’t use a for-statement that says up front “Count from 0 through k-1” and then, 
buried deep in the body of the loop, say “Oops, I changed my mind. Stop!”. Make 
the indeterminacy explicit.66

Beware of being bewitched by for-statements. They are like the Sirens of Homer’s 
Odyssey who enticed sailors to their destruction with their irresistible appeal. Only 
use a for-statement for determinate enumeration. Each time you are tempted to use 
one, ask yourself: Is this really a determinate case? If not, deny yourself its question-
able utility, and stick with the lowly while-statement:

☞ Beware of for-loop abuse; if in doubt, err in favor of while.

Read problem specifications carefully to distinguish between the two kinds of 
iteration. Here are some examples:

/* Print all divisors of p. */

This calls for determinate enumeration because you need to check every integer 
between 2 and p, and print only those integers that are divisors of p. With a little 
thought, you may deduce a smaller upper bound for the number of iterations.

/* Print the smallest divisor of p. */

This calls for indeterminate enumeration because you want to stop as soon as you 
find a divisor of p.

66. There is a subtle difference between the two examples: In the first case, condition is tested 
after each iteration; in the second case, condition is tested before each iteration.



118 · Enumeration Patterns

/* Print the smallest value in a list of n values. */

This calls for determinate enumeration because you can’t know which value in the list 
is smallest unless you consider each and every one of them.

/* Print a value (among a list of n values) that is smaller than p. */

This calls for indeterminate enumeration because you want to stop as soon as you 
find a value smaller than p.

/* Print how many values (in a list of n values) are smaller than p. */

This calls for determinate enumeration because you need to inspect each value.

Enumeration Mod N 
Arithmetic in a finite domain of integers, where the next number after the last inte-
ger is the first integer, is called modular arithmetic. We have all learned to do this with 
the hours on a clock, where the hour after 12 o’clock is 1 o’clock. Life would have 
been easier (or at least more mathematical) if noon at been called 0 o’clock. Arithmetic 
mod N for the case N=12 is easily understood as addition of hours on this 0-origin 
clock. Let h be an hour. Then the next hour is (h+1)%12, and the previous hour is 
(h+11)%12. 

For example, the next hour after 11 is (11+1)%12, or 0. The hour preceding 1 
is found by going 11 hours forward from 1: (1+11)%12, or 12%12, which is 0.

Why, you might ask, isn’t the previous hour (h-1)%12? Because the modulus 
operator (%) yields negative results for negative left operands. For example, (0-1)%12, 
which is -1%12, evaluates to -1. Winning the battle to call noon 0 o’clock will be hard 
enough; let’s not take on trying to call 11 o’clock “-1 o’clock”! So, instead of going 
backward 1 hour, go all the way around by 11 hours, and then use the modulus oper-
ation to map the result into 0 through 11.

In point of fact, calling 11 o'clock “-1 o’clock” is exactly what is done in comput-
ers. And not only that: 10 o'clock is “-2 o’clock”, 9 o'clock is “-3 o’clock”, etc., all the 
way to 6 o'clock, which is “-6 o’clock”. By adopting this convention, the arithmetic of 
signed numbers is implemented addition mod N. Check it out:67

• (-1)+(-2) ∼ (11+10) mod 12 = 21 mod 12 = 9 ∼ -3
• 1+2 ∼ (1+2) mod 12 = 3 mod 12 = 3 ∼ 3
• (+1)+(-2) ∼ (1+10) mod 12 = 11 mod 12 = 11 ∼ -1

Of course, for type int, N is not 12, but 232.
The modulus operation can be thought of as providing the remainder after an inte-

ger division. If k is a positive int, the expression k/N is the integer quotient, whereas 
k%N is the remainder after that integer division. If you find this difficult, perhaps that 
is because third grade (before you learned about decimals) was so long ago.

Indeterminate enumeration of integers mod N, beginning with start, takes the 
form:

int k = start;
while ( condition ) k = (k+1)%N;

67. We indicate regions where the convention regarding the representation of signed num-
bers is at play in red. 

12

6

39

11
10

4
57

8

2

10

12

6

39

11
10

4
57

8

2

10-1
-2

-6-5
-4

-3



Sieve of Eratosthenes · 119

This is fine when it is known that the condition will be false for at least one of the 
N integers in the cycle. But to handle the possibility that condition is true for all k 
in the range [0..N-1], it is infeasible to bound the number of iterations by testing k. 
Specifically, you will not find a satisfactory expression for bound-check in:

int k = start;
while ( bound-check && condition ) k = (k+1)%N;

The problem is that the final value of k in an exhaustive enumeration that begins at 
start is a number k such that incrementing it mod N once more makes k equal to 
start mod N. Any bound-check that would terminate execution in this case would also 
prevent execution of the first iteration. Accordingly, it is best to control the iteration 
with a normal integer k, and replace k with k%N in the condition:

int k = start;
while ( k<=(start+N-1) && condition-with-k-replaced-by-k%N ) k++;

Sieve of Eratosthenes
This example illustrates enumeration of one-dimensional-array indices. 

Background. An integer greater than or equal to 2 whose only divisors are 1 and 
itself is called a prime number; otherwise, it is called composite. We observe, as did 
Eratosthenes [14], that if the integers from 2 through n are written out in order, then 
each integer we come to in left-to-right reading order that has not yet been crossed out 
is prime, at which point we can cross out all its multiples. For example, say n is 15:

2 3 4 5 6 7 8 9 10 11 12 13 14 15

First, we come to 2, which is prime. We cross out all its multiples:

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Next, we come to 3, which is prime. We cross out all its multiples. Note that 6 and 
12 were already crossed out (2 is a factor) but this is of no concern. We cross them 
out again:

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Then, we come to 4, but it has been crossed out because it is composite, so we skip it. 
Five is next, and it is prime. We cross out its multiples (10 and 15) again:

2 3 4 5 6 7 8 9 10 11 12 13 14 15

And so on, picking up 7, 11, and 13 as primes.
Problem Statement. List all prime numbers that are not larger than some given 

integer n.
Solution. The first step is to recognize that the code for finding primes:

/* Print primes up to n. */ 1

using the Sieve of Eratosthenes has the structure of the initialize-compute pattern:



120 · Enumeration Patterns

/* Print primes up to n. */
   /* Initialize sieve to all prime. */
   /* Print each prime in sieve, and cross out its multiples. */

2

Mastery of one-dimensional determinate enumerations allows you to refine the 
specifications in short order. The initialization can run through the integers using a 
standard 1-D determinate enumeration:

/* Print primes up to n. */
   /* Initialize sieve to all prime. */
      for (int j=2; j<=n; j++) ___________
   /* Print each prime in sieve, and cross out its multiples. */

3

Each of those integers must then be considered, but this can be done using exactly 
the same enumeration:

/* Print primes up to n. */
   /* Initialize sieve to all prime. */
      for (int j=2; j<=n; j++) ___________
   /* Print each prime in sieve, and cross out its multiples. */
      for (int j=2; j<=n; j++) ___________

4

If an integer has not been crossed out, it’s prime: Print it and cross out all its mul-
tiples:

/* Print primes up to n. */
   /* Initialize sieve to all prime. */
      for (int j=2; j<=n; j++) ___________
   /* Print each prime in sieve, and cross out its multiples. */
      for (int j=2; j<=n; j++)
         if ( ______ ) {
            System.out.println(j);
            for (int k=2*j; k<=n; k=k+j) ___________
            }

5

This completes the code outline. Now, we consider how to represent the sieve, and 
choose a one-dimensional boolean array named prime of the appropriate size:

/* Print primes up to n. */
   boolean prime[] = new boolean[ ____ ];  // prime[k] true iff k is prime.
   /* Initialize sieve to all prime. */
      for (int j=2; j<=n; j++) prime[j] = true;
   /* Print each prime in sieve, and cross out its multiples. */
      for (int j=2; j<=n; j++)
         if ( prime[j] ) {
            System.out.println(j);
            for (int k=2*j; k<=n; k=k+j) prime[k] = false;
            }

6

Getting the size of the array right is a bit of a fussy detail that we have saved for 
last. We are using subscripts between 2 and n (inclusive), but need to allow for the 
unused indices 0 and 1. So, a size of n+2 seems plausible. However, we are ever-alert 
to the pitfalls of off-by-one errors, and are mindful of our limitations, so we check 

0 1 2

prime



Sieve of Eratosthenes · 121

our hunch with a degenerate example: n equal to 2, for which we only require the 
array shown. Oops. We only need the array to be of size n+1, i.e., 3. 

☞ Beware of off-by-one errors.

We can now complete the code:

/* Print primes up to n. */
   boolean prime[] = new boolean[n+1];  // prime[k] true iff k is prime.
   /* Initialize sieve to all prime. */
      for (int j=2; j<=n; j++) prime[j] = true;
   /* Print each prime in sieve, and cross out its multiples. */
      for (int j=2; j<=n; j++)
         if ( prime[j] ) {
            System.out.println(j);
            for (int k=2*j; k<=n; k=k+j) prime[k] = false;
            }

7

The essential lesson of this example is: Master one-dimensional determinate itera-
tions. One can easily imagine that sufficient proficiency would allow you to complete 
this code in only a few minutes. 

An important proviso is to avoid distractions. For example, suppose you had got-
ten hung up over duplicate cross outs, and had tried to avoid them. Then your code 
for crossing out multiples of prime j might have been:

for (int k=2*j; k<=n; k=k+j) 
   if ( prime[k] ) prime[k] = false;

But why bother? Operations whose net effect is no change at all are harmless, and 
if it takes as long to detect an immanent superfluous operation as it would take to 
just do it, then just do it. 

Similarly, if you had gotten hung up over the fact that the sieve contains no multi-
ples of primes greater than n/2, then you might have fretted about avoiding iterations 
that iterate zero times, writing the cross-out code as:

if ( j<=(n/2) )
   for (int k=2*j; k<=n; k=k+j) prime[k] = false;

But again, it takes roughly as long to test that you are passed the halfway point because 
it takes for the for-loop to determine that 2*j is already greater than n, so just allow 
the loop to repeatedly do nothing.

Avoid special-case code by following the precept:

☞ Code the general case first. Then attempt to make the boundary case 
fit the general case, if possible, making as slight a change to the code 
as possible.

Don’t litter you program with unneeded code. As in architecture: Less is more.
Yet another hang up might have arisen when you went to implement the sieve with 

the array prime. Had you fretted about the unused array elements prime[0] and 
prime[1], you might have been tempted to offset the subscripts by -2. In general:

☞ Avoid index arithmetic, if possible and convenient.

In this case, the cost of two superfluous array elements in the sieve is negligible, and 



122 · Enumeration Patterns

identifying the sieve subscript with the integer whose primality is being represented 
simplifies the code.

The decision to represent the sieve as a boolean array prime rather than as an 
int array sieve containing the integers (crossed out or not) deserves some review 
and comment. Specifically, what split-second thoughts took place at the moment 
we chose this representation?

On its face, a sieve contains integers, so the choice of an int array would have 
been tempting. But then, we would still have had to represent whether an integer was 
crossed out or not. It is common, but inelegant, to represent a binary property (like 

“crossed out”) by negating an otherwise positive integer. This encoding squeezes one 
more bit of information into a value, while still allowing the original (positive) inte-
ger to be recovered, if necessary, by negating it. While such tricks may seem clever, 
they are “too smart by a half ”, and should be avoided. It is best to:

☞ Avoid obscurity. Be as direct as possible.

Instinctive aversion to obscure encodings led us to consider a second array, say, 
crossedOut, to represent the state of the corresponding integer in sieve, i.e., 
crossedOut[j] would indicate whether or not sieve[j] had been crossed out. 
Clearly, crossedOut could be a boolean array. But the next insight was that because 
the value in sieve[j] is j itself, sieve is really quite superfluous. We only need 
the boolean array.

Finally, rather than calling the array crossedOut, we recognized that a number 
is crossed out precisely when we discover that it is composite, so we considered 
renaming the array composite. But noticing that the conditional tests primality 
rather than compositeness, we flipped the sense of the array (thereby avoiding the 
need for negation), and called it prime.

2-D Enumerations
Enumeration of integer pairs ⟨r,c⟩ through a range of values can be done in various 
orders. We call the two integers r and c (for row and column) for geometric intuition, 
even though a two-dimensional array is not (necessarily) involved.

We restrict our attention here to two dimensions, although there is nothing spe-
cial about two. In fact, in Chapter 13 Cellular Automata, we will find ourselves doing 
five-dimensional enumerations, with loops nested five deep. For introductory pur-
poses, two will do.

Orders
Row-major order enumeration proceeds by rows, and within each row, by columns. 
Conversely, column-major order proceeds by columns, and within each column, by 
rows. Both enumerations consider every combination of integer values ⟨r,c⟩ in a 
rectangular region.

Sometimes one wishes to enumerate pairs ⟨r,c⟩ in a square region, (say) in 
row-major order, but without duplicates. In this case, the pairs on the diagonal are 
omitted. You can think of the range of values as a set from which we select two dis-
tinct values in an ordered fashion given by the pair, i.e., r is the first value selected, 
and c is the second.

We may wish to select a pair of values from a set, but in an unordered fashion, i.e., 
we wish to consider ⟨r,c⟩ and ⟨c,r⟩ as indistinct. In this case, we only consider a 

c

r

…

c

r
…

c

r
…

c

r

…

c

r

…



2-D Enumerations · 123

lower-triangular region. One can distinguish between a closed triangle (which includes 
the diagonal), and an open triangle (which excludes it). For example, if one wanted 
to enumerate all two-element sets of distinct natural numbers {r,c} in some range, 
one could enumerate an open lower-triangular region.

Diagonal order is useful when no a priori bound is known for either value of a pair. 
In diagonal order, we enumerate pairs ⟨r,c⟩ in order of r+c, and for a given value of 
r+c, from left to right, i.e., ⟨0,0⟩ ⟨1,0⟩, ⟨0,1⟩, ⟨2,0⟩, ⟨1,1⟩, ⟨0,2⟩, etc. In contrast with 
the other enumerations, diagonal-order enumeration is unbounded.

 Toroidal-enumerations occur on the surface of a torus, i.e., a donut. You can think 
of a torus as a two-dimensional clock, for which modular arithmetic applies in both 
the horizontal and vertical dimensions. It is as if the top and bottom edges of a rect-
angle are one and the same, and the right and left edges are one and the same. Exiting 
at the top (resp. bottom) reenters at the bottom (resp., top); exiting at the right (resp. 
left) reenters at the left (resp. right).68

Diagonal order enumeration on the surface of a torus is also of interest. In gen-
eral, which diagonal to start on, where to start on it, and the skew in selecting the 
start position on the next diagonal are parameters of the ordering. The order illus-
trated runs along diagonals numbered starting at 0, starts in the middle of the top 
row, and uses a skew ⟨Δr,Δc⟩ of ⟨+1,0⟩, i.e., ⟨down 1, no horizontal change⟩ from the 
last position on the previous diagonal to the first position on the next diagonal. We 
term this order “magical”.69

Nested Loops.
Two-dimensional enumerations are typically implemented by nested loops. For 
example, a 3-by-4 row-major-order enumeration:

/* Enumerate ⟨r,c⟩ in [0..2][0..3] in row-major order. */
   for (int r=0; r<3; r++)
      for (int c=0; c<4; c++)
         /* whatever */

It is conventional to explain such code by means of a temporal trace that shows the 
moment of each variable assignment. For the example, the trace would be:

r 0 1 2 3
  ⟶ timec 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Traces are a mechanical way to understand nested loops: In terms of the memory 
operations taken by the computer. Now that you have seen a trace once, wean your-
self of this habit. Rather, adopt a linguistic viewpoint, and leverage the power of 
English to express nested iteration conceptually: 

For each natural number r between 0 and 2 (inclusive), consider each natu-
ral number c between 0 and 3 (inclusive), and do whatever.

Avoid the worms-eye view, if at all possible. Train yourself to reason in a 
natural language and in terms of loop invariants. For example, the invariant for a row- 
major-order enumeration is:

r of h complete rows of width w, and c columns of the next row have been 
enumerated. 

68. A torus is used to model a finite Universe in Chapter 13 Cellular Automata.
69. Toroidal Diagonal Order enumeration is used to construct Magic Squares (p. 128).

…

c

r

1

3

4

0

1

043 2

0 c w
0

r

h



124 · Enumeration Patterns

Code Patterns for Two-Dimensional Enumerations
We provide code patterns for each enumeration order above without further discus-
sion. For row-major order, we provide both determinate and indeterminate patterns 
of enumeration. Diagonal-order enumerations are typically indeterminate.

Row-Major Order
Determinate, 0-origin:

/* Enumerate ⟨r,c⟩ in [0..height-1][0..width-1] in row-major order. */
   for (int r=0; r<height; r++)
      for (int c=0; c<width; c++)
         /* whatever */

Determinate, 1-origin: 

/* Enumerate ⟨r,c⟩ in [1..height][1..width] in row-major order. */
   for (int r=1; r<=height; r++)
      for (int c=1; c<=width; c++)
         /* whatever */

Indeterminate, 0-origin:
The pattern of two nested for-loops for determinate row-major-order enumeration 
is ingrained and knee jerk. Accordingly, there is a strong temptation to adapt it for 
the indeterminate case. Notwithstanding this, we still advocate using a while for 
indeterminate iteration, as follows:

/* Enumerate ⟨r,c⟩ in [0..height-1][0..width-1] in row-major order
   until condition, and do whatever for each. */
   int r = 0; int c = 0;
   while ( r<height && !condition ) {
      /* whatever */
      if ( c<width-1 ) c++; // Not the end of a row; go to next column.
      else { c = 0; r++; }  // The end of a row; go to start of next row.
      }
if ( r==height ) /* fail */ else /* succeed */

Column-Major Order

/* Enumerate ⟨r,c⟩ in [0..height-1][0..width-1] in column-major order. */ 
   for (int c=0; c<width; c++)
      for (int r=0; r<height; r++)
         /* whatever */

Triangular Order
Closed:

/* Enumerate ⟨r,c⟩ in a closed lower-triangular region of
   [0..size-1][0..size-1] in row-major order.*/
   for (int r=0; r<size; r++)
      for (int c=0; c<=r; c++)
         /* whatever */



Ramanujan Cubes · 125

Open:

/* Enumerate ⟨r,c⟩ through an open lower-triangular region
   of [0..size-1][0..size-1] in row-major order.*/
   for (int r=1; r<size; r++)
      for (int c=0; c<r; c++)
         /* whatever */

Diagonal Order

/* Unbounded enumeration of ⟨r,c⟩ starting at ⟨0,0⟩ until condition. */
   int d = 0;
   while ( !condition ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         /* whatever */
         r--;
         }
      d++;
      }

Toroidal diagonal order
The code for toroidal-order enumeration uses modular arithmetic to handle wrap-
around indexing.

/* n-by-n toroidal-diagonal enumeration in "magical order". */
   int r = 0; int c = n/2;
   for (int d=0; d<n; d++) {
      for (int k=0; k<n; k++) {
         /* whatever */  
         r = (r+n-1)%n; c = (c+1)%n; // up 1 and right 1.
         }
      r = (r+2)%n; c = (c+n-1)%n;    // down 2 and left 1.
      }

Ramanujan Cubes
This example illustrates two-dimensional iteration outside the context of two-di-
mensional arrays.

Background. Srinivasa Ramanujan startled British Mathematician G. H. Hardy 
by knowing off the top of his head that the number 1729 is the smallest integer that 
can be expressed as the sum of two positive cubes in two different ways [15].

Problem Statement. Write a program to verify Ramanujan’s claim.
Enumeration. The cube root of 1729 is approximately 12.0023, so we can enu-

merate all sets of distinct values {r,c} selected from the domain 1 through 12, and 
look for duplicates in a histogram of the values r3+c3. Think of r as the larger of the 
two values, c as the smaller of the two, and the loops as an open triangular-order 
enumeration:



126 · Enumeration Patterns

/* Record the values of r^3+c^3 that arise for all sets {r,c} of distinct
   positive integers that are no larger than 12. */
   for (int r=2; r<13; r++) 
      for (int c=1; c<r; c++) 
         /* Keep track of having seen r^3+c^3. */
/* Confirm that 1729 is the smallest integer that arose twice. */

1

Manual inspection of the values that arose will confirm that 1729 is the only one that 
occurs more than once. The development of this code is continued in Chapter 12 
(p. 206), after we have discussed the use of a histogram for keeping track of a col-
lection of values.

Rational Numbers
This example is used in the text for many purposes, both here and in subsequent 
chapters. It is based on simple grade-school arithmetic, yet introduces many sub-
stantive issues. First, it draws a distinction between an abstract value, e.g., a rational 
number, and the multiple representations of that value, e.g., as different unreduced 
fractions. Second, it illustrates an unbounded enumeration (in diagonal order), i.e., 
code that deliberately contains an infinite loop, and discusses the related concept of 
the size of an infinite set. Third, it presents an application in which one can main-
tain a dynamically-growing data structure in the course of a computation, e.g., a 
set of values. We turn to such data structures in Chapter 12 Collections. Fourth, it 
germinates the idea of user-defined datatypes that would allow new kinds of values 
to be manipulated with ease. We invent such types in the specifications used here, 
but without addressing the technical details needed to make them a reality. The 
need to do so motivates Chapter 18 Classes and Objects, and the whole subject of 
object-oriented programming.

Background. A rational number is any number that can be expressed as a frac-
tion p/q, where numerator p and non-zero denominator q are integers. Each rational 
has multiple representations, e.g., 2/3, 4/6, 10/15, etc. A representation p/q for 
which p and q have no common factors is called reduced, e.g., 2/3. One obtains the 
reduced version of a fraction by dividing both the numerator and the denominator 
by their greatest common divisor g, where g can be computed by Euclid’s Algorithm 
(p. 80).70

Although it would seem that there are more rationals than integers, this is not the 
case: One can enumerate the fractions in diagonal-order as an infinitely long list, one 
per line, as shown in output A.71  We then observe that for each line number (an 
integer) there is a fraction, and for each fraction there is a line number. 

This itemization demonstrates that the number of unreduced positive fractions 
is the same as the number of positive integers. The notion of “number” can thus be 
extended to include the size of the infinite set. That number is called “aleph null”, and 
is written as ℵ0. The size of any infinite set that can be listed, one item per integer, is 
said to be ℵ0, and the set is called countable.

To show that the set of rationals is countable, we must restrict the enumeration 
of fractions to reduced fractions. We can easily do so by omitting from our list any 
fraction that represents an already-listed rational, e.g., we skip 2/2 because we have 

70. To avoid confusion with division, we could have written the fraction p/q as p
q . However, 

we won’t bother to do so.
71. In the following discussion, we ignore negative numbers, and zero (in all its different 
manifestations as a fraction), e.g., 0/1, 0/2, 0/3, etc.

1/1 1/2 1/3 1/4 1/5

2/1 2/2 2/3 2/4 2/5

3/1 3/2 3/3 3/4 3/5

4/1 4/2 4/3 4/4 4/5

5/1 5/2 5/3 5/4 5/5

1/1
2/1
1/2
3/1
2/2
1/3
4/1
3/2
2/3
1/4
5/1
4/2
3/3
2/4
1/5
etc.

A



Rational Numbers · 127

already listed 1/1. In this more discriminating enumeration, there are still just as 
many rationals as there are integers, and thus its size is ℵ0. The diagram shows the 
omitted fractions shaded in gray.

Problem Statement. Enumerate each positive rational, one per line.
Enumeration. We start with code to enumerate all positive unreduced fractions 

using the diagonal-order enumeration:72

/* Output positive fractions, including those equivalent as rationals. */
   int d = 0;
   while ( true ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         System.out.println( (r+1) + "/" + (c+1) );
         r--;
         }
      d++;
      }

1

We then modify this code to avoid listing any rational more than once.
We choose to maintain a list of the reduced fractions as they are output. Each frac-

tion in the diagonal-order enumeration is looked up in this list to see if its reduced 
form has already been output, and if it has, we skip it:73

/* Output reduced positive fractions, i.e., positive rationals. */
   int d = 0;
   /* set reduced = { }; */
   while ( true ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         /* Let z be the reduced form of the fraction r/(c+1). */
            int g = gcd(r+1, c+1);
            /* rational z = ⟨(r+1)/g,(c+1)/g⟩; */
         if ( /* z is not an element of reduced */ ) {
            System.out.println( /* z */ );
            /* reduced = reduced ∪ {z}; */
            }
         r--;
         }
      d++;
      }

2

The code in red suggest the possibility of defining new types of values, e.g., 
rational and set, declaring variables that have such types, e.g., z and reduced, 
and programming in terms of operations on such values, e.g., pairing two int val-
ues to make a rational, or testing whether a particular value z occurs in the set 
reduced, or updating the set reduced to contain an additional value z.

Clearly, the ability to define new datatypes would be a highly-desirable 

72. We use the diagonal-order enumeration pattern exactly as presented on page 124, but 
add 1 to both r and c so that pairs of positive (rather than nonnegative) integers are printed.
73. This is one of those places in the book where, for pedagogical purposes, we deliberately 
overlook something. Perhaps you have detected it. It will be revealed and resolved in Chapter 18 
(p. 317), but only after we have learned a great deal about how to maintain a set of values in 
a data structure. 



128 · Enumeration Patterns

generalization. Rest assured that modern programming languages support the 
notion being foreshadowed here. However, it involves numerous rather techni-
cal language features that are well-beyond the minimal language subset assumed 
in Chapter 2 Prerequisites. Accordingly, we defer completing this example until 
Chapter 18 Classes and Objects (p. 302), where the needed features will be pre-
sented, motivated (in part) by this example. Until then, we continue to focus on 
programming using only the primitive datatype int, and arrays of int variables.

Magic Squares
This example illustrates toroidal-order enumeration, and its use of modular arithme-
tic.

Background. An N-by-N array containing distinct integers such that the sum of 
any row, column, or diagonal is the same is called a Magic Square. A sample 3-by-3 
Magic Square is shown, where each row, column, and diagonal sums to 15.

A Magic Square (for odd N) can be constructed, as follows: Start at 1 in the mid-
dle of the top row, and proceed diagonally up and to the right, filling in consecutive 
integers. Whenever you leave the array, re-enter at the opposite side, i.e., as if the top 
and bottom edges were one and the same, and as if the right and left edges were also 
one and the same. Whenever you come to an array element that is already filled, drop 
down to the next row in the same column. Stop when you return to 1. 

Problem Statement. Create an N-by-N Magic Square in int array M, for odd N.
Enumeration. A determinate enumeration of the integers from 1 through N*N 

controls the iteration, and is synchronized with a toroidal-diagonal-order enumera-
tion of array coordinates ⟨r,c⟩, as described on page 123:

/* Let M be an N-by-N Magic Square, for odd N≥1. */
   int M[][] = new int[N][N];  // Initialized to zeros.
   int r = 0; int c = N/2;
   for (int k=1; k<=N*N; k++) {
      M[r][c] = k;
      /* Advance ⟨r,c⟩ in toroidal-diagonal order. */
      }

1

We use a simplification of the toroidal-order-enumeration code pattern given on 
page 125 that advances to the next diagonal when an already-filled array element 
is detected:

/* Let M be an N-by-N Magic Square, for odd N≥1. */
   int M[][] = new int[N][N];  // Initialized to zeros.
   int r = 0; int c = N/2;
   for (int k=1; k<=N*N; k++) {
      M[r][c] = k;
      /* Advance ⟨r,c⟩ in toroidal-diagonal order. */
         if ( M[(r+N-1)%N][(c+1)%N]!=0 ) r = (r+1)%N; 
         else { r = (r+N-1)%N; c = (c+1)%N; }
      }

2

Why the process described results in a Magic Square is beyond the scope of this 
book.74
74. A delightful application of the sample 3-by-3 Magic Square appears in a program to play 
the game of Tic-Tac-Toe (p. 275).

15

15618
15753
15294
15151515



129

ChAPTER 7  
Sequential Search

To search is to look for something systematically. Code that uses a search result is 
called its client, and we assume for convenience that the client code immediately 
follows the search. Thus, the compute-use pattern specializes to the search-and-use 
pattern:

/* Search. */
/* Use the search result. */

Search is ubiquitous in computing, and should be mastered.
In general, we search for a given item in a collection of items. The set of items 

searched in may have unbounded size, e,g., we may search for some value in a pro-
gram’s input data, or for an integer with a given property. Alternatively, the set may 
be bounded, e.g., the elements of an array, or the characters of a text fragment.

A bounded search can succeed or fail, which fact must be conveyed to the client. 
A successful search typically provides additional information to the client beyond 
only success or failure. For example, a search for an item in an array may indicate 
the subscript of the element where the item was found. An unbounded search can 
succeed (if given enough time) or run forever (if the value sought doesn't exist).

When each item of the collection searched is logically associated with another 
value, we may think of the collection as a table of ordered ⟨key, value⟩ pairs. In this 
case, the item searched for is a particular key, and a successful search conveys to the 
client the value that is associated with that key in the table. If no key occurs in the 
table with more than one associated value, the search is effectively the evaluation of 
a function, where the domain of the function is the set of keys in the table, and the 
range of the function is the set of associated values. Search failure occurs when the 
key sought is not in the table, i.e., when the key is outside the domain of the func-
tion. If a key occurs in the table with more than one associated value, it cannot be 
thought of as a single-valued function. In this case, some additional criterion must 
be invoked to select from among multiple entries with the same key.

A search that considers one item at a time is called Sequential Search. It takes no 
shortcuts, and in the worst case, when the item sought isn’t found, inspects each and 
every possibility. Sequential Search is also known as Linear Search.75

75. Binary Search (p. 143) and Hash Tables (p. 207) are techniques that are able to con-
sider more than one item at a time. 



130 · Sequential Search

The mother of all Sequential Searches is the 1-D indeterminate-enumeration 
pattern:

int k = 0; 
while ( condition ) k++;

which is a search for the smallest nonnegative k for which condition is false. The value 
found by this search is conveyed in variable k to the client, which can do whatever 
it wants with it:

int k = 0;
while ( condition ) k++;
/* Use k. */

Although this code appears to be an unbounded search, a bound can be built 
into the condition. Specifically, if we seek an integer k for which condition is false, 
but where k is no larger than some maximum value, the code can take this form:

int k = 0;
while ( k<=maximum && condition ) k++;
if ( k<=maximum ) /* Found. */
else /* Not found */

The section Search in an Unordered Array (below) illustrates this case, where k ranges 
over array subscripts, and maximum is a largest subscript of the array.

When the set of items being searched is complex, a single integer k may not be 
sufficient for keeping track of progress. For example, we may search in a 2-D array 
(using row and column indices), or in some complex data structure. If we introduce 
the notion of an abstract locator p into an abstract collection of items, then the gen-
eral search-and-use pattern is:

/* Let p be the location of what you are looking for, or an indication that
   no such thing exists. */
   p = the-first-place-look;
   while ( p is-not-beyond-the-last-place-to-look && 
           p is-not-what-you-are-looking-for )
      p = the-next-place-to-look;
if ( p is-not-beyond-the-last-place-to-look ) /* Found. */
else /* Not found. */

The first four subsections of this chapter illustrate Sequential Search in various 
settings. The fifth subsection illustrates a search of a very different character: Finding 
a minimal value in an array. Doing so is a “search”, in a sense, but one that requires 
looking at each and every value. 

Primality Testing
An integer greater than or equal to 2 whose only divisors are 1 and itself is called a 
prime number, and is otherwise called composite. Consider implementing the spec-
ification:



Primality Testing · 131

/* Given p≥2, output whether p is prime or composite. */ 1

The first step is to recognize that Primality Testing is a search problem, and that 
the specification can be implemented by Sequential Search. The Search step looks 
through possible divisors of p until finding one. The Use step uses whatever you 
learned from the Search to output whether p is prime or composite.

If this algorithm is not obvious to you, follow the recommendation:

☞ Seek algorithmic inspiration from experience. Hand-simulate an algo-
rithm that is in your “wetware”. Be introspective. Ask yourself: What am 
I doing?

The precept advocates that you should quite literally choose specific numbers, and 
figure out whether they are prime or composite.

☞ There is no shame in reasoning with concrete examples.

Pick one prime and one composite so that you cover the gamut. Force yourself to be 
systematic. Use pencil and paper, or a computer file and editor.

Don’t just eyeball the problem and announce an answer. In psychology, a gestalt is 
something that is perceived as a “unified whole”, but if you gestalt Primality Testing,76 
or otherwise intuit the answer, you defeat the purpose of the exercise. Your program 
is going to have to be systematic, so you should be systematic, too. 

One way to force yourself to be systematic is to pick a big enough number so 
that you can’t immediately know or sense the answer, and you have no alternative 
to being systematic. Another tactic is to write out (in advance) the list of things you 
plan to consider, cover them up with a card so that you can’t just eyeball them, and 
force yourself to decide when and why you should move the card (ever so slightly) 
to reveal the next thing to consider. 

Let’s say that you write out the sequence of possible divisors:

2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 . . .

Then cover them up. Pick a number to test for primality. Say, 7. Now, reveal one pos-
sible divisor at a time, and ask (in turn): 

• Is 2 a divisor of 7? No.
• Is 3 a divisor of 7? No.
• Is 4 a divisor of 7? No.
• Is 5 a divisor of 7? No.
• Is 6 a divisor of 7? No.
• Is 7 a divisor of 7? Yes.

Use a diagram that helps you to visualize what you are doing:

☞ Invent (or learn) diagrammatic ways to express concepts.

For example, underline the numbers you check before declaring a number (in red) 
“prime”:

76. In English, every noun can be verbed!



132 · Sequential Search

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Try another number, say, 15, for which you only check 2 and 3 before declaring 
“composite”:

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Label your diagrams with the variable p, and invent another variable to indicate your 
progress as you work your way through the numbers from left to right. Say you pick 
d for that variable. Your diagrams would then be:

          p
2 3 4 5 6 7 8 9 10 11 12 13 14 15
          d

and

                          p
2 3 4 5 6 7 8 9 10 11 12 13 14 15

 d

Review your activity. Describe what you were doing: You are enumerating possi-
ble divisors: 2, 3, 4, etc. You stop as soon as you find one. You start your search for 
a divisor at 2. 

From this exercise, you should recognize that you are using Sequential Search. 
You should also realize that Search can convey its findings to its client via d, the divi-
sor of p that it finds:

/* Given p≥2, output whether p is prime or composite. */
   /* Search: Let d≥2 be the smallest divisor of p. */
   if ( condition ) System.out.println( "prime" );
   else System.out.println( "composite" );

2

Note that the refinement is a Sequential Refinement into two “statements”: The first 
is a statement-comment, and the second is a conditional statement. The refinement 
is half comment, half actual code, and that is fine.

Since the effect of the search is fully specified, there is sufficient information to 
complete the condition in the client code:

/* Given p≥2, output whether p is prime or composite. */
   /* Search: Let d≥2 be the smallest divisor of p. */
   if ( d==p ) System.out.println( "prime" );
   else System.out.println( "composite" );

3

You can now check the (partially developed) program for correctness because 
you can:

☞ Interpret a statement-comment as executable code.

In fact, the code reads like the very definition of what it means to be a prime num-
ber. 



Primality Testing · 133

Continuing to code, you recognize that the search can be implemented with the 
1-D indeterminate-enumeration pattern starting at 2, which you blast in:

/* Given p≥2, output whether p is prime or composite. */
   /* Search: Let d≥2 be the smallest divisor of p. */
      int d = 2;
      while ( condition ) d++;
   if ( d==p ) System.out.println( "prime" );
   else System.out.println( "composite" );

4

Now you can see that the list of questions you were asking when you worked the 
problem by hand,

• Is 2 a divisor of 7? No.
• Is 3 a divisor of 7? No.
• Is 4 a divisor of 7? No.
• Etc.

was essentially a trace of the execution of a 1-D indeterminate enumeration. All that 
remains is to determine the condition, which we have deliberately deferred until last. 

When you code, it is important to know when you can coast vs when you must 
pay careful attention because you are at a delicate moment. Writing the loop condi-
tion is one of those delicate moments. Why? 

One reason is that condition is the condition for continuing to loop rather than the 
condition for terminating the iteration. If you are not careful, you will be thinking 

“when should I stop”, and implement the condition backwards. 
A second reason is that you must think about whether a remainder of zero when 

p is divided by d indicates divisibility or indicates non-divisibility. This isn’t rocket 
science, but the two issues together are enough of a mental overload to lead to a 
non-zero error rate. 

Recognizing the potential for error, we type the operands first, and delay writing 
the operation. Our methodology deliberately aims to provide as much visual context 
as possible for the delicate step of writing the comparison operation:

/* Given p≥2, output whether p is prime or composite. */
   /* Search: Let d≥2 be the smallest divisor of p. */
      int d = 2;
      while ( (p%d) __ 0 ) d++;
   if ( d==p ) System.out.println( "prime" );
   else System.out.println( "composite" );

5

Now we can reason it out: When d divides p, the remainder is 0, i.e., p%d is equal 
to 0. In this case, we should stop. But condition must be the condition for not stop-
ping, so we need the opposite test, i.e., not equal to 0:

/* Given p≥2, output whether p is prime or composite. */
   /* Search: Let d≥2 be the smallest divisor of p. */
      int d = 2;
      while ( (p%d)!=0 ) d++;
   if ( d==p ) System.out.println( "prime" );
   else System.out.println( "composite" );

6

Primality Testing is an example of a search for which you are guaranteed to find what 



134 · Sequential Search

you are looking for, and thus the search loop need not check to see whether it has 
gone “passed the last place to look”. Why? Because every integer p divides itself, and 
we started enumerating at 2, an integer that is less than or equal to any p that we are 
required to consider. Were you to have started d at 3, the loop wouldn’t have termi-
nated for the case of p equal to 2.

It is also critical that we started the search at 2 and not 1. Were we to have started 
at 1, we would have identified 1 as a divisor of p, and then declared every p≥2 to be 
composite.

Search in an Unordered Array
Consider data contained in an int array named A. For example, the sample array 
shown contains five elements, in an arbitrary order, and has one duplicate (14). The 
diagram shows the indices of A, the subscripts, above the array. They start at 0. Because 
we depict arrays as shown, we sometimes refer to the left end (resp., right end) of the 
array, meaning the element with lowest (resp., highest) subscript, even though there 
is nothing left-like about 0.

By convention, we usually refer to the number of items in the array as n. There 
are several ways to think of n. It may be:

• A constant, e.g., 5 in the above example.
• An int variable that contains the number of items.
• An expression that evaluates to the number of items. 
• The expression A.length.77

The last element of the array has subscript n-1. 
Consider the problem of finding whether a given value v occurs in array 

A[0..n-1]. As with n, v could be a constant, or a variable containing the value of 
interest, or an expression whose value is sought. More generally, v could be a descrip-
tion of a property for the value sought, e.g., “an even number”. If v is a property, there 
is uncertainty about exactly what value in the array was found, which will be up for 
the client to resolve. 

A loose specification of the search problem is:

/* Find v in A[0..n-1], or indicate it’s not there. */

which begs three questions: 
• How will what is found be conveyed to a client?
• What value will indicate that nothing was found?
• What is conveyed when duplicates of v occur in A[0..n-1]?

Surely, the most straightforward way to convey a finding is by its subscript, i.e., where 
v was found. In the case where v is a property, the client can then inspect the array 
element to determine which of multiple possibilities satisfying the property were 
found. 

“Not found” can be signified by any value other than an integer in the range 0 
through n-1. Which such value should be used? Even a tiny-little question such as 
this deserves careful consideration:

☞ Code with deliberation. Be mindful.

77. Arrays in Java are objects, a topic introduced in Chapter 12 Collections. Technically, 
expression A.length accesses the length field of the object referred to by A.

0 1 2 3 4 n
A 14 42 34 14 23



Search in an Unordered Array · 135

We could choose a negative number, which has some appeal because its very nega-
tivity conveys that it could not possibly be the location of an array element. But if we 
are going to look through the array from left to right (0 to n-1), a negative number 
(say, -1) is an unwelcome discontinuity. It is always nice when special cases in code 
can be eliminated, which can often be accomplished by following the precept:

☞ Choose data representations that are uniform, if possible.

The uniform choice for “not found” is n, the very next place after the last place we 
need to look. A uniform data representation creates the felicitous prospect that the 
special case will “come for free” as a result of uniform code that handles the general 
case. We shall see how this arises, below.

If a specification does not say what should happen when there are multiple pos-
sibilities, its implementation is free to choose. The phrase “Find v in A[0..n-1]” 
doesn’t say which, so any occurrence of v will do, e.g., the leftmost. If the choice 
is important, the specification must say so. Proper use of articles is important. For 
example, “an occurrence” suggests the possibility of duplicates and makes clear that 
the choice is arbitrary, whereas “the occurrence” makes explicit a claim that there 
is only one occurrence.

☞ Use article “the” for a unique instance; use articles “a” or “an” for an 
arbitrary instance.

With this discussion behind us, it is time to re-state the specification more pre-
cisely:

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-
   negative integer s.t. A[k]==v, or let k==n if there are no 
   occurrences of v in A. */

1

Although this specification does not explicitly constrain the search order, it surely 
suggests a left-to-right search. 

The following Sequential Search is straightforward, and finds the leftmost occur-
rence of v, if any. The standard 1-D indeterminate iteration is sufficient:

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-
   negative integer s.t. A[k]==v, or let k==n if there are no 
   occurrences of v in A. */
   int k = start;
   while ( condition ) k++;

2

Although k is a run-of-the-mill int variable, we are thinking of its value as a subscript 
of array A, which is depicted diagrammatically, thus:

0 k n
A

The red line dissects the elements of the array into two disjoint regions, and the value 
of variable k identifies the location of the boundary. More specifically, k is the sub-
script of the first element of the region to the right of the boundary.

Imagine that the loop has been iterating for a while. How would we characterize 



136 · Sequential Search

the two regions at the precise moment depicted, above? Assuming that it is our inten-
tion to stop searching as soon as we find what we are looking for, we would know 
that value v does not occur in the left region. And we would know nothing what-
soever about the right region because those values have not yet been inspected:

0 k n
A v not in here ?

This is the loop invariant that must be preserved while we make progress by advanc-
ing k. If A[k] is equal to v, then incrementing k would  break the invariant. Thus, 
the loop condition must not allow k to be incremented when A[k] is equal to v:

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-
   negative integer s.t. A[k]==v, or let k==n if there are no 
   occurrences of v in A. */
   int k = start;
   while ( A[k]!=v ) k++;

3

In other words, we must keep searching as long as we haven’t found what we are 
looking for.

In the case where v does not occur anywhere in A[0..n-1], k will reach n, which 
is beyond right end of the array. We only want to keep searching if there are more 
places to look:

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-
   negative integer s.t. A[k]==v, or let k==n if there are no 
   occurrences of v in A. */
   int k = start;
   while ( k<n && A[k]!=v ) k++;

4

In other words, we only keep going if we haven’t passed the right end of the array.
Clearly, we should start the search at the left end, with k equal to zero:

/* Given array A[0..n-1], n≥0, and value v, let k be the smallest non-
   negative integer s.t. A[k]==v, or let k==n if there are no 
   occurrences of v in A. */
   int k = 0;
   while ( k<n && A[k]!=v ) k++;

5

This establishes the loop invariant, with the “v not in here” region empty, and the 
unknown region “?” the entire array.

When the iteration stops, the while condition is false. Said the other way around, 
when the iteration stops, the negation of the condition is true. In reasoning about 
loop conditions, it is useful to know de Morgan’s Laws,78 and be able to use them 
with ease:

☞ Reason about conditions using de Morgan’s Law(s):
        not (P and Q) ≡ (not P) or (not Q)
        not (P or Q) ≡ (not P) and (not Q)

78. The very same de Morgan who wrote Siphonaptera, (p. 57).



Search in an Unordered Array · 137

where the symbol ≡ should be read as “is equivalent to”, or “is interchangeable 
with”.

In the present example, we can use the first law to derive the stopping condition by 
negating the loop’s condition for continuing to iterate:

not ( condition )
≡  not (k<n && A[k]!=v) 
≡  (not k<n) or (not A[k]!=v)
≡  (k>=n) or (A[k]==v)

The stopping condition that results can be read as: Either we have gone passed the 
right end of the array (i.e., v wasn’t there), or A[k] equals v (i.e., v was there).

The order of operands for “&&” is critical. Specifically, you must first check to see 
if you have gone passed the end of the array, and then check to see if you have found 
what you are looking for. If you were to write the operands in the reverse order, then 
when v is not in A[0..n-1], i.e., when k equals n, your program will crash with a 

“subscript-out-of-bounds” error when it attempts to index the nonexistent element 
A[n]. The reason this error does not occur when the operands are written as shown 
is that “&&” is a so-called short-circuit operator that doesn’t evaluate its right operand 
if the left operand evaluates to false.79

The final code for Sequential Search in an array is clearly a special case of the 
general search pattern presented at the beginning of the chapter. It is fundamental, 
however, and should be mastered. You will have frequent opportunities to use it. 

Although the symbol v denoting the value sought is typically a variable or constant, 
we have allowed that it might be might be a property. We can make this generaliza-
tion explicit by presenting Sequential Search in terms of an arbitrary predicate P(x), 
i.e., a Boolean expression that is parameterized by x:

/* Given P(x), a boolean-valued expression parameterized by x, with domain
   0..n-1, let k be the smallest int s.t. P(k) is true, or n if there is no 
   such k. */
   int k = 0;
   while ( k<n && !P(k) ) k++;

Expression P(x) can be either an explicit invocation of a boolean-valued method 
P(int x), or an expression that is parameterized by the metavariable x. For exam-
ple, P(x) could be the expression (A[x]%2)==0, which evaluates to true if and only 
if x is even:

/* Let k be the smallest index in A[0..n-1] s.t. A[k] is even, or n if all
   A[0..n-1] are odd. */
   int k = 0;
   while ( k<n && (A[k]%2)!=0 ) k++;

In this example, !P(k) is !(A[k]%2)==0), which simplifies to (A[k]%2)!=0. As 
we have illustrated, your ability to manipulate expressions according to algebraic 
laws is an important skill to have.

There are many occasions when we need to find something in an array, and 
Sequential Search will do it for you.

79. The other short-circuit operator, “||” doesn’t evaluate it right operand if the left oper-
and evaluates to true.



138 · Sequential Search

Array Equality
Suppose you have two arrays, A and B, of equal length. How might you determine 
whether they are equal, i.e., contain exactly the same elements?80

/* Given arrays A[0..n-1] and B[0..n-1], set e to true if A equals B,
   else set e to false. */

1

Your first step is to recognize that testing equality of two arrays is searching for cor-
responding elements of the arrays that are not equal:

/* Given arrays A[0..n-1] and B[0..n-1], set e to true if A equals B,
   else set e to false. */
   /* Let k≥0 be smallest s.t. A[k]!=B[k], or n if A equals B. */
   boolean e = (k==n);

2

There are two ways in which the development may proceed. The first way re-derives 
the code: Drop in the 1-D indeterminate-enumeration pattern:

/* Given arrays A[0..n-1] and B[0..n-1], set e to true if A equals B,
   else set e to false. */
   /* Let k≥0 be smallest s.t. A[k]!=B[k], or n if A equals B. */
      int k = 0;
      while ( condition ) k++;
   boolean e = (k==n);

3

and instantiate condition with searching for unequal elements:

/* Given arrays A[0..n-1] and B[0..n-1], set e to true if A equals B,
   else set e to false. */
   /* Let k≥0 be smallest s.t. A[k]!=B[k], or n if A equals B. */
      int k = 0;
      while ( k<n && A[k]==B[k] ) k++;
   boolean e = (k==n);

4

A better way in which the development may proceed comes from having fully inter-
nalized the pattern:

/* Given P(x), a boolean-valued expression parameterized by x, with domain
   0..n-1, let k be smallest int s.t. P(k) is true, or n if there is no 
   such k. */
   int k = 0;
   while ( k<n && !P(k) ) k++;

in which case, thinking of the property P(x) as A[x]!=B[x] leads the same code, 
but in one fell swoop.

Learning Patterns
This is a good moment to reflect on what it means to learn a pattern, and be able to use 
it with facility. The premise of this book is that patterns are so fundamental to coding 
performance that they should be fully internalized. How you reach such a state is not 

80. Java has a standard method for testing array equality, but we shall ignore that.



Sentinel Search · 139

unique to programming: Study the pattern, understand it, memorize it, put it under 
your pillow at night or make flash cards or whatever, and use it over and over again.

One day, you will find yourself blasting the pattern into code in one indivisible 
step without thinking of its constituent parts. Furthermore, you will have internal-
ized exactly what the pattern’s parameters are. For example, in the search pattern 
above, A can be any array of any length, k can be any int variable, n can be any way 
of expressing the length of A, and P(x) can be any Boolean property. As you blast 
a pattern into code, you will find yourself substituting for its parameters “without 
thinking”. Aspire to having patterns in your typing fingers’ muscle memory.

Quite apart from how to go about learning patterns is your will to learn them. If 
you were learning a natural language, you would understand the need to learn vocab-
ulary:

• Le, la, les
• Der, das, dem
• Uno, dos, tres
• Etc.

Patterns are the vocabulary of programming. They are essential, and should be mas-
tered.

Sentinel Search
The general pattern for search checks when to stop. There are two cases: When you 
find what you are looking for, and when there are no more places to look. Sentinel 
Search merges these two cases into one by making sure that you will always find what 
you are looking for. The sentinel is a guard that prevents you from going too far. It 
does so by being an example of what you are looking for, so that you stop.

The benefit of Sentinel Search is that it only performs one test rather than two on 
each iteration. Thus, it is a code optimization.81 Typically, optimization come at the 
expense of code simplicity, and you should adhere to this precept:

☞ Don’t optimize code prematurely.

Nonetheless, the technique so important that we introduce it here. We start with the 
standard sequential-search pattern in an array:

/* Let k be an index in A[0..n-1] containing v, or n if no v in A. */
   int k = 0;
   while ( k<n && A[k]!=v ) k++;

and transform it into Sentinel Search.
First, we make a useful observation: Recall the search for smallest divisor in the 

code for Primality Testing (p. 130), and ask: Why, in that case, was there no test 
to prevent d from going too far?

/* Search: Let d≥2 be the smallest divisor of p. */
   int d = 2;
   while ( (p%d)!=0 ) d++;

81. The term “optimization” in programming is a misnomer. By convention, in programming, 
optimization means “improvement”, not “making optimal”.



140 · Sequential Search

The answer is that p always divides itself: If p is prime, the loop will stop with d equal 
to p (and if p is composite, the loop will have stopped earlier). The “divisibility of p 
by itself ” stood guard, like a sentinel, preventing d from going too far. 

Suppose the array is actually one larger than n, i.e., there is an extra array element 
at A[n] that is otherwise unused, e.g., the array was actually allocated to have size n+1, 
or larger. Then that extra location can be used for the sentinel, a copy of v itself:

/* Let k be an index in A[0..n-1] containing v, or n if no v in A.
   Assume an A[n] exists. */
   A[n] = v; 
   int k = 0; 
   while ( k<n && A[k]!=v ) k++;

The sentinel at A[n] stands guard, and stops k from going passed n:

0 k n
A v

and because the check k<n is now superfluous, it can be eliminated:

/* Let k be an index in A[0..n-1] containing v, or n if no v in A.
   Assume an A[n] exists. */
   A[n] = v; 
   int k = 0; 
   while ( A[k]!=v ) k++;

Requiring that an array be allocated one larger than n is sometimes onerous. As 
an alternative, you can use A[n-1] for the sentinel provided the value there is first 
saved in a temporary variable; you can then put it back when you are done with the 
search:

/* Let k be an index in A[0..n-1] containing v, or n if no v in A.
   Assume n>0. */
   int temp = A[n-1]; A[n-1] = v;  // Save A[n-1]. Replace it with v.
   int k = 0; 
   while ( A[k]!=v ) k++; 
   A[n-1] = temp;                  // Restore A[n-1]. 
   if ( k==n-1 && A[n-1]!=v ) k=n; // Test A[n-1] when sentinel found.

This code works provided the array has at least one element.
Sentinels are a general technique for dealing with boundary conditions. In the case 

of Sequential Search, the boundary condition is “falling off the end of the array”.82

Find Minimal
Finding a minimal element in an array is a search problem, but differs from all previ-
ous examples in this chapter.83

82. Other examples of boundary conditions where sentinels are used to good effect appear 
in Chapter 14 Knight’s Tour, and Chapter 15 Running a Maze
83. We say “minimal” rather than “minimum” to allow for the possibility that there is more 
than one occurrence of a smallest value in A[0..n-1]. Similarly, we would say “maximal” rather 
than “maximum” to indicate the possibility of duplicate largest values.



Find Minimal · 141

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */ 1

Earlier examples used an indeterminate enumeration because it made sense to termi-
nate the search as soon as the value sought was found. In contrast, finding a minimal 
value in an array requires inspecting each and every value. Accordingly, a determi-
nate iteration that enumerates each possible index in a range is appropriate, and we 
can use a for-statement:

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
   ________
   for (int j= ____; ____; ____ ) ____________

2

As with any other iteration, develop the body of the loop first, and defer termination, 
initialization, finalization, and boundary conditions until later. One way to obtain an 
INVARIANT for the loop is to start with the desired postcondition (call it POST):

nk0
A[k] is smallest in hereA

and (as per p. 77) apply the precept:

☞ To get to POST iteratively, choose a weakened POST as an INVARIANT.

leading to the INVARIANT:

0 k j n
A A[k] is smallest in here ?

Alternatively, we could play musical chairs, stop the music, and reflect on what has 
been accomplished after an arbitrary number of iterations.

Our goal now is to maintain INVARIANT while increasing j by 1. A Case Analysis 
on A[j] is in order. We must consider the case where k must be updated to j:

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
   int k = ____;  // Index of the minimal element of A[0..j-1].
   for (int j= ____; ____; ____ )
      if ( condition ) k = j;

3

which surely depends on a comparison between A[j] and A[k]. As in previous 
examples, we establish a visual context for thinking carefully about the correct com-
parison operation:

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
   int k = ____;  // Index of the minimal element of A[0..j-1].
   for (int j= ____; ____; ____ )
      if ( A[j] ____ A[k] ) k = j;

4

We update k to j when A[j] is strictly less than A[k]. Using “<=” instead of “<” 
wouldn’t be wrong; it would just change whether the code finds the leftmost or 
rightmost instance of a minimal value. Because the specification didn’t say which, 
we are free to choose:



142 · Sequential Search

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
   int k = ____;  // Index of the minimal element of A[0..j-1].
   for (int j= ____; ____; ____ )
      if ( A[j]<A[k] ) k = j;

5

The increment and limit condition are straightforward:

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
   int k = ____;  // Index of the minimal element of A[0..j-1].
   for (int j= ____; j<n; j++ )
      if ( A[j]<A[k] ) k = j;

6

Assuming A[0..n-1] has at least one element, we can establish the loop invariant 
by setting k to 0, and starting j at 1:

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1]. */
   int k = 0;    // Index of the minimal element of A[0..j-1].
   for (int j=1; j<n; j++ )
      if ( A[j]<A[k] ) k = j;

7

Why does this initialization establish the loop invariant, which asserts that A[k] is 
the minimal element in A[0..j-1]? Because when j is 1, j-1 is 0, so the range of 
elements of A considered by the invariant is A[0..0], i.e., A[0]. In that set, A[0] is 
a minimal value. Of course, it is also the only value.

If n can be 0, i.e., if the array can be empty, a Case Analysis is needed to convey 
an appropriate value for k. We note that the specification is inadequate in that case 
because it doesn’t say what the value of k should be. One possibility would be to 
return k as -1:

/* Given A[0..n-1], find k s.t. A[k] is minimal in A[0..n-1].
   k is -1 if n=0. */
   int k = -1;  // Index of the minimal element of A[0..j-1], or -1.
   if ( n!=0 ) {
      k = 0;
      for (int j=1; j<n; j++ )
         if ( A[j]<A[k] ) k = j;
     }

7a

The code for finding a minimal value in an array should be seen as a specialization 
of a general pattern that is not specific to arrays. Let S(j) be any scoring function on 
a non-empty domain of int values j in the range first through last. We seek a k for 
which S(j) is minimal:

/* Given int-valued function S(j) defined on non-empty int domain
   first through last, let k in that domain be s.t. S(k) is minimal. */
   int k = first;
   int minS = S(first);
   for (int j=first+1; j<=last; j++) {
      int s = S(j);
      if ( s<minS ) { minS = s; k = j; }
      }



143

ChAPTER 8  
Binary Search

Chapter 7 discussed how to use Sequential Search to find a value v in an array 
A[0..n-1] when the elements of the array occur in an arbitrary order. When the 
elements are known to be in numerical order, there is a far-faster way to search. The 
inspiration for this method comes from the everyday experience of looking up a 
word in a dictionary.84

☞ Seek algorithmic inspiration from experience. Hand-simulate an algo-
rithm that is in your “wetware”. Be introspective. Ask yourself: What am 
I doing?

Say you wanted to find the definition of the word proboscis in a 512-page dictionary. 
You wouldn’t use Sequential Search starting on the first page, say, with aardvark. You 
would start roughly in the middle. From there, you would:

• Repeatedly halve the portion of the dictionary that remains under consideration, 
doing so by looking at the middle page of the region in hand, and discarding 
whichever half is revealed thereby to not contain proboscis. 

• Once the search has been narrowed to a single page, you would look on that 
page to see if proboscis is there.85

• If it is, you found its definition; otherwise, it isn’t in the dictionary.
The method is called Binary Search, and is an example of a Divide and Conquer algo-
rithm. Binary Search is astoundingly fast. 

An Application of Divide and Conquer
The specification for Binary Search is similar to that of Sequential Search, but with 
the added qualification that the elements of the array are ordered:

/* Assume A[0..n-1] is arranged in non-decreasing order. Let k be an
   index of A where A[k]==v, or n if no v in A. */

1

84. Everyday experience? Well, sort of. Before Google and the Internet, there were things 
called “books” that contained sheets of paper called “pages”. One looked up words in a book by 
searching for a page that contained the word, and then found the word’s definition on that page.
85. The fact that a dictionary page contains more than one word is an irrelevant artifact of 
the example that somewhat confuses the analogy. To make it fit better, imagine that each page 
contains only one word, so once you have found the page, you have found the word (or not).



144 · Binary Search

Why the awkward phrase “non-decreasing”? Why not say “increasing”? Because when 
there are duplicates, the sequence of values does not (strictly speaking) increase, e.g., 
they could be all the same.

The implementation of Binary Search presents an excellent opportunity to demon-
strate of our methodology. It is straightforward, but requires careful analysis in a 
number of spots. 

How do we begin? Surely, with the loop:

☞ If you “smell a loop”, write it down.

We sense the presence of an iteration, and hasten to insert a looping construct into 
our code. But before doing so, it is essential to:

☞ Decide first whether an iteration is indeterminate (use a while) or 
determinate (use a for).

An iteration is determinate when it is possible to know, in advance, the number of 
times the loop will repeat. While technically, our loop is determinate, the calcula-
tion is far from simple because it must apply even when n, the number of elements 
in the array, is not a power of 2.

Aware of the precept:

☞ Beware of for-loop abuse; if in doubt, err in favor of while.

we decide that the calculation it is not worth the effort, and we just use a while-state-
ment:

/* Assume A[0..n-1] is arranged in non-decreasing order. Let k be an
   index of A where A[k]==v, or n if no v in A. */
   while ( condition ) { _________ }

2

You can never get in trouble when you choose a while because it subsumes the deter-
minate case. Recall that the for-loop:

for ( initialize; condition; update ) statement

is really shorthand for:

initialize;
while ( condition ) {
   statement
   update
   }

so, if it turns out that a determinate iteration is in order, your code will reflect that 
in the pattern of statements that emerges, and (if you feel the need) you will be able 
to retrofit a for in place of the while afterwards.

Strictly speaking, the code we have written is a pure Iterative Refinement (one 
while-statement); however, to allow for initialization prior to the loop, and final-
ization after the loop, it is advantageous to consider the code as a three-statement 
Sequential Refinement, with placeholders for the first and third parts:



An Application of Divide and Conquer · 145

/* Assume A[0..n-1] is arranged in non-decreasing order. Let k be an
   index of A where A[k]==v, or n if no v in A. */
   _________
   while ( condition ) { _________ }
   _________

2b

We will elide these placeholders rather than indicating them explicitly, but will feel 
free to insert code before and/or after the while if the need arises:

☞ Benefit from the fact that a while-loop divides a region of code into four 
subregions; a for-loop divides it into six.

This step is a painless (and somewhat mindless) application of Divide and Conquer. 
All we did was smell a loop, write it down, and we divided Gaul into four parts!

We must now decide in what order to fill in the blanks. We find guidance in:

☞ Code iterations in the following order: (1) body, (2) termination, 
(3) initialization, (4) finalization, (5) boundary conditions.

Accordingly, we start with the body of the loop.
Surely, you now smell a Case Analysis because we must choose between the left 

and right halves of the array. Write it down:

/* Assume A[0..n-1] is arranged in non-decreasing order. Let k be an
   index of A where A[k]==v, or n if no v in A. */
   while ( condition ) {
      if ( condition ) __________; else __________;
      }

3

As with the while-statement, you can think of there being invisible placeholders 
before and after the if-statement, and can insert code there, if necessary.

The virtue of developing the body of a loop first is that it forces you to consider 
the general case first, and not get mired in specific details of the first and last time 
around the loop:

☞ Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the 
“program state” when the music stops, i.e., at the instant the loop-body is 
about to execute yet again. If you had stopped one iteration later, what 
would have looked the same (the “loop invariant”), and what would have 
changed (the “loop variant”)?

To develop the loop invariant for array problems, it is very helpful to have a dia-
gram:

☞ If the problem lends itself to diagrammatic reasoning, draw diagrams 
that characterize the invariant, and label key boundaries with program 
variables.

After an arbitrary number of iterations, the region of interest will have been reduced 
to some portion of the array. We can identify the boundaries of the region by two 
red lines.

0 n
A



146 · Binary Search

 Next, we label the boundaries with variables, i.e., variables that will contain the 
subscripts of the left and right elements of the region between them. Think of L and 
R as your left and right hands bracketing the set of pages in the dictionary that are 
still under consideration. They are somewhere, but we don’t know exactly where.

You may look at the given diagrams and object that the region A[L..R] seems 
to straddle the midpoint. This situation can never arise after the first iteration, you 
say, because Binary Search halves regions, going from the whole, to a half, to a quar-
ter, etc. 

If this is your thinking, you misunderstand how to read a schematic diagram. 
Specifically, what it means for a diagram to be “schematic” is that it makes no claims 
about the specific locations of indices like L and R. We choose to depict them arbi-
trarily, and for visual convenience. You must not infer anything from the proportional 
distance of A[L] from A[0], or of A[R] from A[n-1] in a schematic diagram.

The convention as to exactly what A[L] and A[R] denote is, in a measure, arbi-
trary. As implied by the diagram, we have chosen to consider them to be the first and 
last elements of the region still under consideration. We could have chosen other-
wise, say letting R be the subscript of the first element beyond that region, but the 
symmetry of our selection seems propitious.

The diagram visually specifies the equivalent of the textual form of the represen-
tation invariant:

int L; // Leftmost index of the region of A still under consideration.
int R; // Rightmost index of the region of A still under consideration.

but does so very succinctly.
What must the loop invariant be? That the value we are looking for has not slipped 

through our hands. Specifically, that if v is in A[0..n-1], then it is in A[L..R]. The 
invariant can be depicted diagrammatically: 

0 L R n
A v in here if v in A[0..n-1]

To reduce clutter, we omit this annotation from our subsequent diagrams, but the 
invariant is far from “clutter”—it’s the essence of what makes Binary Search work!

What must the loop variant be? That the number of array elements in A[L..R] 
is reduced by at least 1 on each iteration. However, we will (usually) do far better 
than that.

How will we decrease the loop variant while maintaining the loop invariant? By 
dividing A[L..R] roughly in half, and choosing the appropriate half, ever so care-
fully. What we mean by “ever so carefully” is that we will take care to maintain the 
invariant. What we mean by “roughly” is that if the number of elements in A[L..R] 
is even, then we will divide it exactly into halves; otherwise, one of the “halves” will 
be one element larger than the other.

We introduce the variable M for the midpoint, and add it to our diagram. What 
subscript for M is roughly in the middle? The integer part of the average of L and R. 
We slip a declaration of M initialized to (L+R)/2 into the code,86 as well as initialized 
declarations for L and R.87

86. When both operands of division (/) are int, the quotient is int, and any fractional part 
is truncated.
87. If the array is very large, the expression (L+R)/2 may cause an arithmetic overflow, 

0 L R n
A

0 L M R n
A



An Application of Divide and Conquer · 147

/* Assume A[0..n-1] is arranged in non-decreasing order. Let k be an
   index of A where A[k]==v, or n if no v in A. */
   int L = ____; int R = ____;
   while ( condition ) {
      int M = (L+R)/2;
      if ( condition ) __________; else __________;
      } 

4

Thinking about what it means to choose the left (resp., right) half of A[L..R], we 
see that it requires changing R (resp., L), but exactly how, we are not yet sure:

/* Assume A[0..n-1] is arranged in non-decreasing order. Let k be an
   index of A where A[k]==v, or n if no v in A. */
   int L = ____; int R = ____;
   while ( condition ) {
      int M = (L+R)/2;
      if ( condition ) R = ____; else L = ____;
      } 

5

We have now arrived at a program with six blanks. We are sketching the program a 
little bit at a time, and in deciding on a coding order are following the guidance to:

☞ Defer challenging code for later; do the easy parts first.

Along the same lines, we can sketch in the if-condition following the suggestion 
that:

☞ When refining a condition placeholder, establish the operands first, then 
the relational operation.

The test will clearly have something to do with comparing v, the value we are looking 
for, and A[M], the array element at the midpoint. That’s the easy part:

/* Assume A[0..n-1] is arranged in non-decreasing order. Let k be an
   index of A where A[k]==v, or n if no v in A. */
   int L = ____; int R = ____;
   while ( condition ) {
      int M = (L+R)/2;
      if ( v ___ A[M] ) R = ____; else L = ____;
      } 

6

We have been putting off the hard and risky work for as long as possible, as per:

☞ Procrastinate: Never code today what you can defer until tomorrow.

But tomorrow has now arrived.

especially if the value sought is at the right end of the array. Specifically, if L is at least half the 
largest int value, then L+R is guaranteed to overflow. The risk of overflow is eliminated if the 
average is computed by the expression L+(R-L)/2, which is mathematically equivalent for 
infinite-precision integers, but is not equivalent for finite-precision, 32-bit integers. We con-
tinue to use the expression (L+R)/2 in the code presented because it is more intuitive, but 
would adopt the safer expression in the end. 



148 · Binary Search

It is time to figure out expressions for setting new values of R and L. Different peo-
ple have different abilities to reason abstractly, but this seems like a fine occasion to 
embrace concrete examples, and reason from them:

☞ Alternate between concrete reasoning and abstract reasoning.

We obtain several concrete examples by annotating the previous schematic diagram 
with specific subscripts, so that it is no longer schematic. In doing so, we observe 
that it may be worthwhile to distinguish between the cases of an even number and 
an odd number of elements in A[L..R].

We determine M by simple arithmetic: After truncating the fractional part in quo-
tients, (2+5)/2 equals 3, and (2+4)/2 equals 3. There is a bit of an art to picking 
concrete examples. Clearly, the primary touchstones are generality and recognition 
of appropriate cases. In the present examples, our choices included the cases for even 
and odd sizes, where in the array to position the A[L..R] region, and the size of the 
region.

For where, the sample regions can be translated left or right in the array without 
effect; try it (mentally) in the diagram, and validate the property that A[M] is the 
rightmost element of the left “half ” regardless of where it is positioned.

For size, the length of the regions doesn’t matter; try (mentally) growing (resp., 
shrinking) the sample regions by successively appending (resp., truncating) cells 
pairwise on the left and right ends of the region, and validate the property that A[M] 
is the rightmost element of the left “half ” regardless of its size. In the case of even-
length regions, M remains 3 regardless of whether the region is A[2..5], A[3..4], 
or A[1:6]. Similarly, in the case of odd-length regions, M remains 3 regardless of 
whether the region is A[2..4], A[1..5], or A[0..6]. 

We conclude from the diagrams that we can uniformly use M as the subscript of 
the right end of the left “half ”, and can use M+1 as the subscript of the left end of the 
right “half ”, independent of whether the region size is even or odd.

With this observation in hand, we can update L and R appropriately:

/* Assume A[0..n-1] is arranged in non-decreasing order. Let k be an
   index of A where A[k]==v, or n if no v in A. */
   int L = ____; int R = ____;
   while ( condition ) {
      int M = (L+R)/2;
      if ( v ___ A[M] ) R = M; else L = M+1;
      } 

7

You may have been tempted to use M for both expressions. It is clear that there is noth-
ing wrong with the choice we have adopted. The effect of using M for both expressions 
is less clear, and will be discussed later.

It’s time to reason about the relational operator in the if-condition. The choice 
between “less” rather than “more” should be clear by abstract reasoning: When v is 
smaller than A[M], what we are looking for must be to the left.

We note, in passing, that we are skirting an easy mistake to make: To choose the 
left half, we must move R (not L), and to choose the right half, we must move L (not 
R). It is easy to imagine “having a screw loose”, and getting this code backwards.

To make the choice between “<” or “<=”, we consider the case when A[M] is v. 
Clearly, in the equal case, we should choose the left half because otherwise we risk 
letting v slip through our fingers, thereby breaking the invariant:

0 1
L
2

M
3 4

R
5 6 n

A

0 1
L
2

M
3

R
4 5 6 n

A

0 1
L
2

M
3 4

R
5 6 n

A v

0 1
L
2

M
3

R
4 5 6 n

A v



An Application of Divide and Conquer · 149

/* Assume A[0..n-1] is arranged in non-decreasing order. Let k be an
   index of A where A[k]==v, or n if no v in A. */
   int L = ____; int R = ____;
   while ( condition ) {
      int M = (L+R)/2;
      if ( v<=A[M] ) R = M; else L = M+1;
      } 

8

When we choose the left half, we do so in full recognition that when v occurs more 
than once in A[L..R], it may also appear in the right half, as well. The loop invari-
ant requires that we must be sure to keep an instance of the value v in A[L..R] as 
we shrink the region. The invariant does not require that we bracket all instances.

This step completes development of the loop body, so we move on to loop ter-
mination. We must continue to subdivide regions until they have been shrunk to a 
size of 1:

/* Assume A[0..n-1] is arranged in non-decreasing order. Let k be an
   index of A where A[k]==v, or n if no v in A. */
   int L = ____; int R = ____;
   while ( L!=R ) {
      int M = (L+R)/2;
      if ( v<=A[M] ) R = M; else L = M+1;
      } 

9

For termination, we must argue that the loop variant is reduced on each iteration, 
i.e., that the size of A[L..R] necessarily gets smaller each time around the loop, and 
therefore must eventually reach size 1. If ever the region stops getting smaller, we will 
never reach the condition that L==R, and as a result, the loop will not terminate.

Let’s consider what we hope will be the penultimate iteration, where the size of 
the region under consideration is 2. Then the size of the next region must be 1 regard-
less of which half is chosen. But here we see the difficulty were we to have chosen 
the right half by (incorrectly) setting L to M rather than (correctly) to M+1. Specifically, 
consider the case where A[M] is not v. In this case, we must select the right half, but 
by setting L to M, would be selecting A[3..4] for the right half, and would continue 
to do so ad infinitum. The loop would never terminate.

The next step is the initialization of L and R, which is straightforward:

/* Assume A[0..n-1] is arranged in non-decreasing order. Let k be an
   index of A where A[k]==v, or n if no v in A. */
   int L = 0; int R = n-1;
   while ( L!=R ) {
      int M = (L+R)/2;
      if ( v<=A[M] ) R = M; else L = M+1;
      } 

10

After initialization comes finalization: The result must be conveyed as the value of 
variable k, as per the specification. 

n65
R
4

M
L
3210

vA



150 · Binary Search

/* Assume A[0..n-1] is arranged in non-decreasing order. Let k be an
   index of A where A[k]==v, or n if no v in A. */
   int L = 0; int R = n-1;
   while ( L != R ) {
      int M = (L+R)/2;
      if ( v<=A[M] ) R = M; else L = M+1;
      } 
   if ( A[L]==v ) k = L; else k = n;

11

The final step in the code development is boundary conditions:

☞ Boundary conditions. Dead last, but don’t forget them.

The boundary condition for this code is the situation where the array A is empty, i.e., 
where n equals zero. 

We inspect the code we have developed for the general case to see what would 
happen. Conceivably, we would luck out, and all would be well. Unfortunately, this 
is not the case:

• R will have been set to -1, and therefore will not be equal to L. Thus, the loop 
condition will be true, and the loop body will execute. Midpoint M will be com-
puted as 0, and the non-existent array element A[0] will be accessed, resulting 
in a runtime error.

• Even if we were to arrange for the loop condition to be false in this case, the test 
“A[L]==v” would also access the non-existent array element A[0].

Our choice is to attempt a surgical adjustment of the existing code, or to treat the 
case of n equal to zero as special. The latter is the easier path: 

/* Assume A[0..n-1] is arranged in non-decreasing order. Let k be an
   index of A where A[k]==v, or n if no v in A. */
   if ( n==0 ) k = 0; 
   else {
      int L = 0; int R = n-1;
      while ( L != R ) {
         int M = (L+R)/2;
         if ( v<=A[M] ) R = M; else L = M+1;
         } 
      if ( A[L]==v ) k = L; else k = n;
      }

12

Boundary conditions often involve considering degenerate cases, e.g., empty arrays, 
which can be confusing to reason about. The present example is no exception. We 
have avoided subscripting a non-existent array element, and have followed the spec-
ification exactly, setting k to n, i.e., 0. But this would seem to suggest that we found 
v in A[0], which may engender a momentary panic.

What is the difference, we think, between an array of length 1 containing v (in 
which case k must be set to 0), and an empty array (in which case we set k to 0)? 

Something seems very wrong here: As a general principle, two very different cases 
(one where we found v, and the other where we didn't) shouldn't yield the same 
result! Could it be that there is something inadequate about our convention that a 
failed search for v in A[0..n-1] should be indicated by a result location of n? 



An Application of Divide and Conquer · 151

We relax when we consider the proper use of a search result by its client. The test 
is:

if ( k<n ) /* Found. */ else /* Not found. */

When both k and n are zero, the condition evaluates to false, which indicates that the 
value sought was not found. All is well!

We have argued that the loop invariant and variant are critical both during code 
development, and for understanding the correctness of the code afterwards. Yet 
they are nowhere to be seen in the code. This is partly a consequence of our exten-
sive use of graphical diagrams, which don't lend themselves to placement in code. 
Incorporating textual versions of the invariant and variant into the code is a good 
idea, although we don’t urge that this always be done: 

/* Assume A[0..n-1] is arranged in non-decreasing order. Let k be an
   index of A where A[k]==v, or n if no v in A. */
   if ( n==0 ) k = 0;
   else {
      int L = 0; int R = n-1;
      /* Invariant: v is in A[L..R] if v is in A[0..n-1]. */
      /* Variant: R-L. */
      while ( L!=R ) {
         int M = (L+R)/2;
         if ( v<=A[M] ) R = M; else L = M+1;
         } 
      if ( A[L]==v ) k = L; else k = n;
      }

13

Running time and space
The performance of Binary Search is truly wonderful. For example, searching an 
array of size 512 requires only 9 times around the loop! Count the region sizes: 512, 
256, 128, 64, 32, 16, 8, 4, 2, 1. Far superior to Sequential Search, and the code isn’t 
that complicated. A constant amount of work must be performed by the body of the 
loop on each iteration, and the size of the regions are (approximately) halved on each 
iteration. Thus, the total number of iterations will be (approximately) 1+log2 n. We 
say that the running time is proportional to log n.88

No extra space is required.
There is no better illustration of the power of Divide and Conquer than Binary 

Search.

88. Typically, additive constants and logarithm bases are not mentioned in describing the 
order of a running time because they only effect the constant of proportionality.



152 · Binary Search



153

ChAPTER 9  
One-Dimensional Array 
Rearrangements

The need to rearrange values in a one-dimensional array is commonplace. For exam-
ple, you may need to reverse the order of the values, or move the first value to the 
right end, shifting all remaining values to the left one cell. It is important to be able 
to write such code easily.

Everyday experience can often suggest how to approach a problem. For many 
tasks, you know how to do it; you just need to learn how to code what your brain 
already understands:

☞ Seek algorithmic inspiration from experience. Hand-simulate an algo-
rithm that is in your “wetware”. Be introspective. Ask yourself: What am 
I doing?

Because values in a one-dimensional array resemble a hand of playing cards, you can 
hope to draw on your experience playing card games for inspiration in dealing with 
arrays. For example, Sequential Search for a value in an array is essentially the same 
as left-to-right search for a particular card in a hand.

The analogy is helpful up to a point, but is flawed when cards are removed, inserted, 
or rearranged: Cards shift to fill removals, and shift to make room for insertions, with-
out your even thinking about it, let alone dong anything to make it happen. But this 
is not how arrays work. 

A closer analogy to an array is an ordered sequence of boxes containing the cards. 
When you pull a card from a box (e.g., 2♥), you leave an empty box, and when you 
(try to) insert a card (e.g., 5♠), nothing moves over automagically to make room.89

The shifts come for free in cards, but require effort in an array. Notwithstanding 
this important difference, you can still draw on your experience for algorithmic 
inspiration, e.g., when we come to Sorting in Chapter 11, we will encounter two 
algorithms commonly used by card players: Selection Sort and Insertion Sort. But 

89. Even this analogy is flawed because, in programming, values are copied from variables, not 
pulled from them, as with cards from boxes.

2

2

2233

4

4

55

6

6

A0 A1 A2
A3

A4

222233445566



154 · One-Dimensional Array Rearrangements

keep in mind that there is “no free lunch”: If your algorithm requires shifting values 
in an array, you must code it yourself.90

This chapter addresses several important array manipulations, including reversing, 
shifting, rotating, partitioning, and collating. It is also an excellent setting in which 
to master iteration, and improve your ability to think in terms of loop invariants. 

Reverse
We wish to reverse the order of values in a subregion of an array:

/* Given int array A[0..n-1], reverse the order of the subsequence 
   A[L..R] in situ without affecting the rest of A. */
static void Reverse( int A[], int L, int R ) {
   } /* Reverse */

1

The Latin term in situ means “in place”, and in this context means “without use of 
another array”. We define a method, Reverse, so that we may use it later.

Clearly, an enumeration of subscripts is needed, but is it determinate or indeter-
minate? Asked another way, can we predict before the iteration begins how many 
times to loop, say in terms of the values of parameters L and R? The answer is “yes”, 
but perhaps with some difficulty. So, rather than fussing with what might be a deli-
cate and error-prone expression for the limit of a determinate enumeration, we treat 
the problem as indeterminate, and see how that works out:

/* Given int array A[0..n-1], reverse the order of the subsequence 
   A[L..R] in situ without affecting the rest of A. */
static void Reverse( int A[], int L, int R ) {
   while ( condition ) {
      }
   } /* Reverse */

2

Working an example by hand, say, 1,2,3,4,5,6, we hit on the idea of swapping the first 
and last elements (getting 6,2,3,4,5,1), swapping the second and second to last ele-
ments (getting 6,5,3,4,2,1), etc. 

Following the rule to develop the loop body first, and the rule to draft a schematic 
diagram for the general case (after an arbitrary number of iterations), we draw:

0 L R n
A already swapped not swapped yet already swapped

The blue boundaries define the original region of the array to be reversed (as given 
by method parameters), and the red boundaries delimit the subregion that has not 
yet been swapped. But now we see a recursive aspect of the problem: Reversing the 
remaining subregion is the same problem as we started with, just smaller.91 We realize 

90. The need to do these shifts relates directly to the way in which arrays are laid out in a 
computer memory (p. 31). The list datatype of some languages, e.g., Python, is a gener-
alization of arrays that supports such insertions and deletions as built-in operations. You may 
wonder whether the language implementation is doing the shifts for you “under the hood”, or 
whether it has a completely different way to represent arrays in memory. 
91. The term “recursive” is being used here to describe an aspect of the problem, not a coding 
technique. We could have implemented Reverse as a recursive method, but have chosen to 
use iteration, instead. That choice doesn’t change the fact that the problem itself is recursive.



Reverse · 155

that we can avoid introducing new variables for the red boundaries by moving the 
parameters L and R after each swap:

0 L R n
A already swapped not swapped yet already swapped

which leads to the code:92

/* Given int array A[0..n-1], reverse the order of the subsequence 
   A[L..R] in situ without affecting the rest of A. */
static void Reverse( int[] A, int L, int R ) {
   while ( condition ) {
      /* Swap A[L] and A[R]. */
         int temp = A[L]; A[L] = A[R]; A[R] = temp;
      L++; R--;
      }
   } /* Reverse */

3

All that remains is to consider termination. Clearly, as long as L is strictly less than R, 
we still have more swapping to do:

/* Given int array A[0..n-1], reverse the order of the subsequence 
   A[L..R] in situ without affecting the rest of A. */
static void Reverse( int[] A, int L, int R ) {
   while ( L<R ) {
     /* Swap A[L] and A[R]. */
         int temp = A[L]; A[L] = A[R]; A[R] = temp;
      L++; R--;
      }
   } /* Reverse */

4

This code is very straightforward; it is easy to understand that it is correct.
This is a good opportunity to reflect on the precept:

☞ Beware of for-loop abuse; if in doubt, err in favor of while.

and consider some of the disagreeable possible consequences that might have arisen 
were we to have ignored it. 

The knee-jerk instinct for many would have been to write:

92. A subtle distinction between scalar and array parameters is at play in this example. As 
described in Chapter 2 (p. 28), scalar parameters are local variables of the method that are 
initialized with the values of corresponding argument expressions. Thus, we are free to change 
L and R within Reverse without concern that we are thereby changing variables of the caller. 
In contrast, when Reverse modifies elements of array A (where A is an array parameter), the 
elements that are being changed are in the corresponding argument array that is provided by 
the caller of Reverse. The mechanism that effects this is explained in a footnote on page 203.



156 · One-Dimensional Array Rearrangements

/* Given int array A[0..n-1], reverse the order of the subsequence 
   A[L..R] in situ without affecting the rest of A. */
static void Reverse( int[] A, int L, int R ) {
   for (initialize; condition; go-on-to-next)
      /* Swap A[___] and A[___]. */
   } /* Reverse */

2a

 which we term a “seduction”. How might we have proceeded from there?
A key aspect of a for-statement is its use of a single control variable. We would 

have had two choices: Either introduce a new variable, say, k:

for (int k=___; condition; go-on-to-next)
   /* Swap A[___] and A[___]. */

or use L itself (or R) as the control variable, say:

for (L=___; condition; go-on-to-next)
   /* Swap A[___] and A[___]. */

Let's explore each possibility.
If we introduce a new variable k to control the for, we have two choices: Either 

it is an offset from L that starts at zero, and counts up:

for (int k=0; condition; k++)
   /* Swap A[L+k] and A[R-k]. */

or it is an index that starts at L, and marches to the right:

for (int k=L; condition; k++)
   /* Swap A[k] and A[___]. */

In the first case, we have only to write a condition that compares k with an appro-
priate limit. For the limit, we might inadvertently write R-L+1 (the number of array 
elements in A[L..R]), forgetting to divide by 2, and thereby re-reversing the array 
back to where it started. Assuming we do remember to divide by 2, we would have 
to fret about the distinction between an even and an odd number of elements in 
A[L..R], what happens when integer division truncates a fractional part, and the 
like. 

Yes, the midpoint is still of concern in our solution, but not in the stressful context 
of attempting to write a correct arithmetic expression for the limit. It was far easier 
to code: Continue swapping provided L is strictly less than R. For an odd number of 
elements, L and R will end up being equal, and by terminating in that case, we avoid 
the useless swap of the midpoint with itself.93 For an even number of elements, L 
and R pass each other, and L ends up being R+1. But this is nothing to worry about, 
at least if we wrote the condition for continuing the iteration as L<R. Of course, had 
we written it as L!=R, then we would have had a bug!

Treating control variable k as an offset (in the positive direction from L, and in the 
negative direction from R) offers a pleasing symmetry that is often advantageous. It 

93. Not that this would be a problem because swapping A[j] and A[k] when j happens to 
equal k works fine. When this occurs, A[j] and A[k] are called aliases, i.e., two ways to refer 
to the same thing.



Left-Shift-k · 157

shares this with our solution. But it introduces an extra conceptual level that is absent 
from our solution: Index arithmetic. Specifically, the indices of the array elements 
to be swapped must be understood as the results of calculations, rather than just as 
the values of L and R themselves.

In general, it is best to:

☞ Avoid index arithmetic, if possible and convenient.

The approach where the control variable k starts at L and marches to the right 
aims to avoid index arithmetic (for the left participant in the swap), but does so at 
the expense of introducing nontrivial expressions for the limit, and for the subscript 
of the right participant in the swap: 

for (int k=L; k<limit; k++)
   /* Swap A[k] and A[subscript]. */

You might try writing the limit and subscript as an exercise, but then revel in the sim-
plicity of our while-loop solution.

For completeness, we return to the final possibility mentioned for the control 
variable, using L itself:

for (L=___; L<=midpoint; L++)
   /* Swap A[L] and A[subscript]. */

This has computational difficulties that are similar to those of the previous approach, 
as well as the obscurity of having to replace the initialization of L (shown in blue) 
with empty.

We trust that the advantages of our while-loop solution are manifest.

Left-Shift-k
We want to shift the elements of an array left some number, k, of positions:

/* Given array A[0..n-1], and 0≤k, shift elements of A left k places. 
   Values shifted off the left end of the array are lost. Values not
   overwritten remain as they were originally. */
static void LeftShiftK( int A[], int n, int k ) {
   } /* LeftShiftK */

1

We define a method, LeftShiftK, so that we may use it later. 
Clearly, an iteration is called for, and because we can compute the number of rep-

etitions beforehand, a for-loop can be used:

/* Given array A[0..n-1], and 0≤k, shift elements of A left k places. 
   Values shifted off the left end of the array are lost. Values not
   overwritten remain as they were originally. */
static void LeftShiftK( int A[], int n, int k ) {
   for (int j= ____; condition; j++) ____________
   } /* LeftShiftK */

2

Our loop-coding-order precept calls for working on the body first. 



158 · One-Dimensional Array Rearrangements

A template for assigning one element of the array into another is immediate, and 
can be dropped into the body:

/* Given array A[0..n-1], and 0≤k, shift elements of A left k places. 
   Values shifted off the left end of the array are lost. Values not
   overwritten remain as they were originally. */
static void LeftShiftK( int[] A, int n, int k ) {
   for (int j= ____; condition; j++) A[destination] = A[source];
   } /* LeftShiftK */

3

It is somewhat arbitrary whether the control variable of the loop, j, should be used 
as the subscript of the destination variable, or the source variable. We choose desti-
nation arbitrarily:

/* Given array A[0..n-1], and 0≤k, shift elements of A left k places. 
   Values shifted off the left end of the array are lost. Values not
   overwritten remain as they were originally. */
static void LeftShiftK( int[] A, int n, int k ) {
   for (int j= ____; condition; j++) A[j] = A[source];
   } /* LeftShiftK */

4

A diagram is helpful for visualizing the expression for the source subscript:

0 j ? n
A

k

We can guess that source is j+k, but are on the alert for the possibility that an adjust-
ment by ±1 may be required. However, when we consider case where k is 0, we know 
that the source and destination must be the same, so it is clear that no such adjustment 
is needed or appropriate:

/* Given array A[0..n-1], and 0≤k, shift elements of A left k places. 
   Values shifted off the left end of the array are lost. Values not
   overwritten remain as they were originally. */
static void LeftShiftK( int[] A, int n, int k ) {
   for (int j= ____; condition; j++) A[j] = A[j+k];
   } /* LeftShiftK */

5

This completes the code for the loop body. Next, we tackle termination of the loop.
Deriving a limit expression is a common programming challenge for which it is 

useful to have a repeatable technique. We can either attempt it with a general, sche-
matic diagram like the above, for arbitrary k and n, or reason about it for some specific 
value of n, say, 4, and then generalize. Either way, we should first choose a relational 
operator, “<” or “<=”, for the limit comparison. This is somewhat a matter of personal 
taste, but “<” is recommended, especially for 0-origin enumerations. Accordingly, 
condition will take the form “j<limit”.

Let’s try reasoning about the general case directly, and consider the last array ele-
ment to be shifted:

0 ? n
A

k n-1



Left-Shift-k · 159

The last source variable is A[n-1], and in terms of variables n and k, the last destination 
variable would be A[(n-1)-k]. The last value of j, for which the condition “j<limit”, 
must be true, is when j is (n-1)-k, so limit must be one larger, i.e., (n-1)-k+1. Thus, 
simplifying, limit is n-k.

Here’s how the derivation might go if we were to reason somewhat more algebra-
ically. Each variable that occurs in the limit will appear linearly, i.e., not raised to a 
power, and with a coefficient of ±1. For each such variable, we can tease out the sign 
of the coefficient. The bound clearly depends on n in a positive sense because the big-
ger n, the more array elements must be shifted. Equally clearly, the bound depends 
on k in a negative sense because the bigger k, the fewer array elements must be shifted. 
Thus, we tentatively choose the limit “n-k+constant”, where the constant is likely 
to be 0, but may be ±1. With humility, we are allowing for the possibility of an off-
by-one error in our reasoning.

Now, let’s consider a concrete example, say n is 4, and make a table showing desired 
values of “n-k+constant” for different values of k:

n k last assignment last j last j+1 n-k+constant
4 1 A[2]=A[3]; 2 3 4-1+constant

4 2 A[1]=A[3]; 1 2 4-2+constant

4 3 A[0]=A[3]; 0 1 4-3+constant

We can see that the constant is 0, the limit is n-k, and the code must be:

/* Given array A[0..n-1], and 0≤k, shift elements of A left k places. 
   Values shifted off the left end of the array are lost. Values not
   overwritten remain as they were originally. */
static void LeftShiftK( int[] A, int n, int k ) {
   for (int j= ____; j<n-k; j++) A[j] = A[j+k];
   } /* LeftShiftK */

6

It is time to code the initialization, which (baring some obscure boundary condi-
tion) is trivial:

/* Given array A[0..n-1], and 0≤k, shift elements of A left k places. 
   Values shifted off the left end of the array are lost. Values not
   overwritten remain as they were originally. */
static void LeftShiftK( int[] A, int n, int k ) {
   for (int j=0; j<n-k; j++) A[j] = A[j+k];
   } /* LeftShiftK */

7

Finally, we turn our attention to the boundary conditions. The two that come to 
mind are k≥n, and k==0. 

In the first case, because k≥n, the expression n-k is negative or 0; thus, when j 
is initialized to 0, the condition j<n-k is immediately false, and the for-statement 
doesn’t iterate at all. Good.

The second case, where k is 0, is somewhat surprising: The loop for a left shift of 
0 iterates n times, assigning A[j] to A[j], for every j between 0 and n-1. The code 
is correct, but it is mildly offensive that in the case where there is nothing to do, we 
do the most work. We special-case this boundary condition, and bypass the loop:

0 1 2 3 n
A



160 · One-Dimensional Array Rearrangements

/* Given array A[0..n-1], and 0≤k, shift elements of A left k places. 
   Values shifted off the left end of the array are lost. Values not
   overwritten remain as they were originally. */
static void LeftShiftK( int[] A, int n, int k ) {
   if ( k>0 ) 
      for (int j=0; j<n-k; j++) A[j] = A[j+k];
   } /* LeftShiftK */

8

Given this check, we could now relax the requirement that k not be negative, if we 
wish. 

The chain of reasoning for deriving LeftShiftK has been surprisingly difficult. 
Why? Because we have had to consider three variables (n, k, and j), 0-origin sub-
scripts, a 0-origin enumeration of j, and a strictly-less-than relation in the condition, 
all at once. This stretches the limit of our ability to juggle. Don’t lose heart; it’s hard 
for everyone.

Left-Rotate-1
Method LeftShiftK preserved the k elements at the right end of the original array. 
We could have called for it to zero-fill, i.e., to replace those values with 0, but chose 
not to. We now seek to rotate all of the values of an array one place to the left, filling 
A[n-1] from A[0]:

/* Given int array A[0..n-1], shift A[1..n-1] 1 place left, with the 
   value originally in A[0] reentering at right in A[n-1]. */
static void LeftRotateOne(int A[], int n) {
   } /* LeftRotateOne */

1

We define a method, LeftRotateOne, so that we may use it later. 
The value A[0], which will be overwritten by the left shift, is first saved, so that 

it is available to fill A[n-1]:

/* Given int array A[0..n-1], shift A[1..n-1] 1 place left, with the 
   value originally in A[0] reentering at right in A[n-1]. */
static void LeftRotateOne(int A[], int n) {
   int temp = A[0];
   LeftShiftK(A, n);
   A[n-1] = temp;
   } /* LeftRotateOne */

2

Although copying the value in A[0] to temp leaves the original value unaltered, it is 
helpful to think of the operation as having moved that value, leaving behind a “hole”. 
Similarly, we can think of shifting A[1..n-1] into A[0..n-2] as creating a “hole” 
in A[n-1]. Finally, we fill the “hole” in A[n-1] by “moving” the value in temp to 
A[n-1]. This is not, of course, the way things actually work, but is a worthwhile 
conceptualization, nonetheless.

Left-Rotate-k
Generalizing Left-Rotate-1 to Left-Rotate-k offers a pleasantly rich opportunity to 
consider multiple algorithms for the same problem:



Left-Rotate-k · 161

/* Given int array A[0..n-1], and integer k, 0≤k<n, left shift A[k..n-1]
   k places, with values originally in A[0..k-1] reentering at right. */

1

We present four distinct ways to implement Left-Rotate-k, followed by a discussion 
about their relative merits. Interestingly, two are Sequential Refinements (Swap 
Generalization and Three Flips), and two are Iterative Refinements (Repeated Left-
Rotate-1 and Juggle in Cycles). Who said Stepwise Refinement was deterministic? 

Repeated Left-Rotate-1
This is straightforward, especially given that we defined LeftRotateOne as a method. 
We just call it k times:

/* Given int array A[0..n-1], and integer k, 0≤k<n, left shift A[k..n-1]
   k places, with values originally in A[0..k-1] reentering at right. */
   for (int j=0; j<k; j++) LeftRotateOne(A, n, 1);

2a

Swap Generalization 
This solution to Left-Rotate-k is akin to the standard 3-statement code pattern for 
swapping two scalar variables:

/* Swap x and y. */
   int temp = x;
   x = y;
   y = temp;

We introduce a temporary array into which to copy the initial k elements of A, thereby 
creating a “hole” that is k elements wide. Then, we shift the remaining elements left 
k places, thereby creating a k-wide “hole” at the right. Then, we fill that hole from 
the temporary:

/* Given int array A[0..n-1], and integer k, 0≤k<n, left shift A[k..n-1]
   k places, with values originally in A[0..k-1] reentering at right. */
   int temp[] = new int[k];
   /* temp[0..k-1] = A[0..k-1]; */
   LeftShiftK(A, n, k);
   /* A[___..n-1] = temp[0..k-1]; */

2b

While some programming languages support aggregate assignments of sub-arrays 
(as suggested by our statement comments), ours does not. Nonetheless, we can use 
such assignments in our specifications to advantage. Note that, for now, we have 
omitted a potentially vexing subscript calculation.

The code implementing the copy of the first k elements into temp benefits from 
two things: the data manipulations are left-aligned, i.e., begin at 0, and indexing in A 
and temp are aligned, so subscripting takes place in lock step. Only the limit condi-
tion j<k requires thought. How many values need to be copied to temp? Answer: k 
values. We can use the standard pattern for doing something k times:



162 · One-Dimensional Array Rearrangements

/* Given int array A[0..n-1], and integer k, 0≤k<n, left shift A[k..n-1]
   k places, with values originally in A[0..k-1] reentering at right. */
   int temp[] = new int[k];
   /* temp[0..k-1] = A[0..k-1]; */
      for (int j=0; j<k; j++) temp[j] = A[j];
   LeftShiftK(A, n, k);
   /* A[___..n-1] = temp[0..k-1]; */

3b

The code for copying temp back to the right end of array A will require a bit of 
care. Our first step is to select the enumeration pattern for the iteration, and we have 
two choices: Enumerate subscripts of the source array, i.e., temp, or subscripts of the 
target array, i.e., A. We follow the precept:

☞ Avoid gratuitous differences in code. Reuse code patterns, if possible.

and deploy exactly the same enumeration pattern as we just used:

/* Given int array A[0..n-1], and integer k, 0≤k<n, left shift A[k..n-1]
   k places, with values originally in A[0..k-1] reentering at right. */
   int temp[] = new int[k];
   /* temp[0..k-1] = A[0..k-1]; */
      for (int j=0; j<k; j++) temp[j] = A[j];
   LeftShiftK(A, n, k);
   /* A[___..n-1] = temp[0..k-1]; */
      for (int j=0; j<k; j++) A[___] = temp[j];

4b

The parallel structure of the two for-loops gives us less to think about. Specifically, 
it is easy to see that the very same values that were copied into temp are then cop-
ied from temp.

All that remains is the target subscript expression, for which we must be alert to 
a possible off-by-one error. The difficulty is similar to that experienced in writing 
Left-Shift-k.

The subscript expression must depend on j in a positive sense because this is the 
control variable stepping through the elements of temp, from left to right, copying 
them back. It must depend on n in a positive sense because the bigger n, the fur-
ther to the right the values in temp must go. It must depend on k in a negative sense 
because the bigger k, the more values there are in temp, and thus the copying back 
must start at smaller subscripts. Thus, we tentatively choose the subscript expression 
n-k+j+constant, where the constant is likely to be 0, 1, or -1. Now we can reason 
about where the last element to be copied back goes, A[n-1]. Since this will happen 
when j equals k-1, our subscript expression simplifies to n-k+(k-1)+constant, 
which simplifies to n-1+constant, which must be n-1, so the constant is 0:

/* Given int array A[0..n-1], and integer k, 0≤k<n, left shift A[k..n-1]
   k places, with values originally in A[0..k-1] reentering at right. */
   int temp[] = new int[k];
   /* temp[0..k-1] = A[0..k-1]; */
      for (int j=0; j<k; j++) temp[j] = A[j];
   LeftShiftK(A, n, k);
   /* A[n-k..n-1] = temp[0..k-1]; */
      for (int j=0; j<k; j++) A[n-k+j] = temp[j];

5b



Left-Rotate-k · 163

Three Flips
A simple and elegant implementation of Left-Rotate-k comes from thinking about 
order reversal as a geometric operation, i.e., reflection, rather than a result of concen-
tric swaps. For example, the reverse of  is .

 Representing ordered sequences as arrows, we draw A[0..k-1] as a red arrow, 
A[k..n-1] as a blue arrow, and then observe that three reflections effect a rotation: 
Reverse the red arrow, then reverse the blue arrow, then reverse the gray arrow, i.e., 
the pair of red and blue arrows, as one. Beautiful and efficient:

/* Given int array A[0..n-1], and integer k, 0≤k<n, left shift A[k..n-1]
   k places, with values originally in A[0..k-1] reentering at right. */
   Reverse(A, 0, k-1);
   Reverse(A, k, n-1);
   Reverse(A, 0, n-1);

2c

Notice that the implementation of the problem specification is a Sequential 
Refinement, not an Iterative Refinement, and turns on a property of the algebra of 
arrow transformations.94

Juggle in Cycles
A tempting approach that you may easily fall into is to start moving elements, one at 
a time, into their correct target location in the array. We can start by moving A[k] 
to A[0], but before doing so, must create a “hole” at A[0] by first saving A[0] in a 
temporary variable. Copying A[k] into that “hole” fills it, but creates a new “hole” 
at A[k]. Now you can fill that hole, etc. You are effectively swapping “holes” with 
the values that belong in them, pushing the “holes” forward along a chain of array 
elements, in a fashion akin to juggling:

/* Given int array A[0..n-1], and integer k, 0≤k<n, left shift A[k..n-1]
   k places, with values originally in A[0..k-1] reentering at right. */
   int p = 0;                    // Start at A[0] 
   int temp = A[0];              //   and make a hole there.
   while ( condition ) {
      A[p] = A[____];            // Fill hole at p, making a new hole.
      p = ____;                  // Advance to the new hole.
      }
   A[p] = temp;                  // Fill the last hole from temp.

2d

It is easy to see that for large n and small k, a “hole” at subscript p gets filled with 
the value at A[p+k], and the “hole” then works its way to the right k elements at a 
time. When we reach beyond the right end of array A, we must wrap around, as if 
the elements of A were arranged in a circle. We do this by using modular arithmetic 
(p. 118), i.e., by considering (p+k)%n rather than p+k. It is as if we were advanc-
ing the hand on an n-hour clock (with hours 0 through n-1) at a rate of k hours 
each step:

94. The reflection of x is its inverse x-1, i.e., the transformation that composed with x is the 
identity transformation. Our code leverages (x-1◦y-1)-1 = y◦x.



164 · One-Dimensional Array Rearrangements

/* Given int array A[0..n-1], and integer k, 0≤k<n, left shift A[k..n-1]
   k places, with values originally in A[0..k-1] reentering at right. */
   int p = 0;                    // Start at A[0] 
   int temp = A[0];              //   and make a hole there.
   while ( condition ) {              
      A[p] = A[(p+k)%n];         // Fill hole at p, making a new hole.
      p = (p+k)%n;               // Advance to the new hole.
      }
   A[p] = temp;                  // Fill the last hole from temp.

3d

We keep going until we would be about to start undoing what we had accomplished: 
The loop continuation condition looks ahead to the next value of p (on the n-hour 
clock), and assures that the loop will stop before it would set p back to 0 again:

/* Given int array A[0..n-1], and integer k, 0≤k<n, left shift A[k..n-1]
   k places, with values originally in A[0..k-1] reentering at right. */
   int p = 0;                    // Start at A[0] 
   int temp = A[0];              //   and make a hole there.
   while ( (p+k)%n!=0 ) {        // Stop if p is about to be 0 again.
      A[p] = A[(p+k)%n];         // Fill hole at p, making a new hole.
      p = (p+k)%n;               // Advance to the new hole.
      }
   A[p] = temp;                  // Fill the last hole from temp.

4d

Bench-checking this code provides evidence that it works for various values of n and 
k, e.g., for n of 8, and k equal to 1, 3, 5, and 7. However: 

☞ Beware of premature self-satisfaction.

Unfortunately, the code does not work correctly for k of 2, 4, or 6, and for a rather 
interesting reason. 

Consider the case of n equal to 8, and k equal to 2. The cycle of values moved 
would be those from A[2], A[4], A[6], and then temp, which was holding A[0]. But 
what about the rest? They would be left unmoved:

0 1 2 3 4 5 6 7 n
Atemp

Similarly, consider the case of n equal to 8, and k equal to 6. The cycle of values 
moved would be those from A[6], A[4], A[2], and then temp, which was holding 
A[0]. The same set of (gray) values are moved, albeit to different locations. Again, 
the rest of the values are unmoved:

0 1 2 3 4 5 6 7 n
Atemp

Finally, consider the case of n equal to 8, and k equal to 4. This time, only A[4] 
and A[0] are moved, and the rest of the values are ignored:

0 1 2 3 4 5 6 7 n
Atemp

Clearly, we have stumbled into unexpected complexity. The code only works correctly 
when n and k are relatively prime, i.e., have no common divisors other than 1.



Left-Rotate-k · 165

We have deliberately spun out this yarn to illustrate how misfortune can befall you. 
Starting with promising but flawed intuition, we envisioned the code as a generaliza-
tion of Left-Rotate-1, in which the array is fashioned into a circle, and “left shifting” 
is performed in a stride of k array elements per step. With the diagrams above so 
clearly illustrating that the code is inadequate, it is difficult in hindsight to recall why 
we ever thought it would work. Perhaps we were snookered by so many cases that 
did work. This is a lesson in what can happen in the absence of a sound, top-down 
approach: Derivation of a code fragment of uncertain utility.

We now have two choices: Attempt to rescue the approach, or abandon it. We have 
inadvertently run headlong into some mathematics that may be beyond our ability, 
so it may be best to back out. However, for closure here, we state the relevant math-
ematics [16], without proof, and use it to complete the code:

• Left-Rotate-k of an array of length n can be decomposed into GCD(n,k) dis-
joint cycles that advance k elements at a time, where GCD(n,k) is the greatest 
common divisor of n and k (p. 80).

• The elements A[0..GCD(n,k)-1] appear in distinct cycles.
This knowledge allows us to embed our code fragment in a loop that considers all 
cycles:

/* Given int array A[0..n-1], and integer k, 0≤k<n, left shift A[k..n-1]
   k places, with values originally in A[0..k-1] reentering at right. */
   int g = gcd(n,k);
   for (int j=0; j<g; j++) {
      int p = j;                 // Start at A[j] 
      int temp = A[p];           //   and make a hole there.
      while ( (p+k)%n!=j ) {     // Stop if p is about to be j again.
         A[p] = A[(p+k)%n];      // Fill hole at p, making a new hole.
         p = (p+k)%n;            // Advance to the new hole.
         }
      A[p] = temp;               // Fill the last hole from temp.
      }

Discussion
The efficiency of the four algorithms for Left-Rotate-k can be compared in terms of 
the total number of array-element moves:

Version of Left-Rotate-1 #moves Explanation
Repeated Left-Rotate-1 k·n Each Left-Rotate-1 moves all n elements. 

Done k times.

Swap Generalization n+k The copies into and out from temp do 2·k 
moves, and the shift does n-k moves.

Three Flips 2·n Each element moves during the 1st two re-
verses, and then again for the 3rd reverse.

Juggle in Cycles n+gcd(n,k) Each element moves once, plus the first 
element of each of the gcd(n,k) cycles must 
first be saved in temp.

Juggle in Cycles is best in terms of move counts, but has poor locality because it 
repeatedly does only one update before moving on to the next region of the array. 



166 · One-Dimensional Array Rearrangements

The other methods do more work in a region (or two regions) at a time before mov-
ing on. Locality can be critical in virtual-memory environments.

Repeated Left-Rotate-1 is worst in terms of move counts, but is probably the con-
ceptually easiest to understand.

Swap Generalization appears to do fewer moves than Three Flips, but the count 
shown ignores the fact that initialization of temp as part of its allocation (e.g., as is 
built into some programming languages), would add another k operations. This over-
head can be rendered unimportant by allocating temp once, and not every time Swap 
Generalization is run. Even if this were done, the total number of moves approaches 
2·n (the bound for Three Flips) when k approaches n. The main disadvantage of Swap 
Generalization is that it is not in situ, and therefore requires extra memory space.

Three Flips is conceptually easy to understand, has a bound on the number of 
values moved that is independent of k, is in situ (and therefore needs only one extra 
scalar variable for the swaps in Reverse), has good locality, and is easy to code cor-
rectly. The favorite.

Dutch National Flag
Given array A[0..n-1] consisting of three different values, (say) red, white, and 
blue, we want to rearrange A so all reds precede all whites, which precede all blues. 
The problem takes its name from the Dutch National Flag, which consists of three 
stripes—red, white, and blue. We say “rearrange” to preclude counting the number 
of each color, and then overwriting A with the corresponding number of each color. 
For motivation, imagine that each element of A has additional information that must 
be moved together with the element.

The problem was used by Edsger Dijkstra—a Dutchman—to illustrate the power 
of thinking about programming in terms of invariants and variants. It may be viewed 
as a degenerate form of sorting, for the case where there are only three different val-
ues. It is a fundamental manipulation of general applicability:

/* Given array A[0..n-1] consisting of only three values (red, white,
   and blue), rearrange A into all red, then white, then blue. */

1

Clearly, there is an iteration. We could jump to the conclusion that it is a determi-
nate iteration, and write a for-statement, but it is better to defer judgment on that 
until seeing what the invariant might be. We can always replace a while with a for if 
its familiar pattern emerges:

/* Given array A[0..n-1] consisting of only three values (red, white,
   and blue), rearrange A into all red, then white, then blue. */
   while ( condition ) ______________

2

We have often advocated working sample data by hand, and inferring an invariant 
by introspection. However, one can easily list four obvious (possible) invariants for 
this problem, and consider their relative merits—in the abstract. Interestingly, we 
ignore experience, and drive algorithm discovery via the candidate invariants:

 0 w b k n
A R W B ?

0 r w b n
A ? R W B

0 w k b n
A R W ? B

0 k w b n
A R ? W B



Dutch National Flag · 167

Let’s call the four possible invariants NW, NE, SW, and SE, respectively.
NW and NE are symmetric in the sense that they both have the red, white, and 

blue regions (R, W, B) abutting one another, with the unknown region (?) to either 
their right or left. The intuition of NW is that the next item to consider is A[k], which 
will be moved appropriately based on whether it is red, white, or blue. Then k will be 
incremented, and the unknown region will get one smaller. We will be done when k 
reaches n. This sounds quite like a determinate iteration, with k as the control vari-
able, leaving R, W, and B regions behind it as it marches from left to right over the 
array. Anyone smell a for-loop?

Interestingly, despite its symmetry with the NW version, the NE version seems 
harder to fathom. The processing would seem to be best done from right to left on 
items of the unknown region, which is atypical. Also, labeling the left boundary of 
the red region k seems unnatural, so we chose to label it r instead. But then, what 
is the control variable stepping through the unknown region? Perhaps it would be 
more natural if the right-most cells of regions were the ones labeled, as in:

0 k r w n
A ? R W B

But we have grown accustomed to labeling that is done the other way, and if we 
switch now, n will seem at odds with the others. Since NW and NE should, in prin-
ciple, offer the same algorithmic advantages and disadvantages, we abandon NE in 
favor of its symmetric NW cousin.

SW and SE both seem intuitive and should be algorithmically equivalent. In either 
case, the unknown region can be processed from left to right, deciding on each itera-
tion what to do with A[k]. But now, k doesn’t march all the way from 0 through n-1. 
Rather, the unknown region will shrink, and we will stop when it has been reduced 
to nothing. Smells more like a while-loop. Because the choice between SW and SE 
seems arbitrary, we pick at random: SW.

Which invariant should we choose between NW and SW, and on what basis? How, 
in fact, do they differ? The answer lies in their topologies. In NW, the right boundary 
of the unknown region (?) is rigidly tied to the right boundary of A[0..n-1] itself, 
and can’t move. In contrast, either the left or the right boundary of the unknown 
region in SW can shift. Our code can take advantage of the greater freedom of action 
offered by the SW invariant. Accordingly, we select it:

0 w k b n
A R W ? B

In words, the invariant is:

A[0..w-1] red, A[w..k-1] white, A[b..n-1] blue, for 0≤w≤k≤b≤n.

The textual representation makes explicit in the inequalities “0≤w≤k≤b≤n” the implicit 
diagrammatic rule that “any region can be empty”. Specifically, when w is 0 (resp., k 
is w, or b is n), region A[0..w-1] (resp., A[w..k-1] or A[b..n-1]) is empty, i.e., 
contains no array elements at all.

We introduce declarations for the three variables, together with representation 
invariants for those variables, but leave the initializations for last:



168 · One-Dimensional Array Rearrangements

/* Given array A[0..n-1] consisting of only three values (red, white,
   and blue), rearrange A into all red, then white, then blue. */
   /* A[0..w-1] red, A[w..k-1] white, A[b..n-1] blue, for 0≤w≤k≤b≤n. */
      int k = ____; int w = ____; int b = ____;
   while ( condition ) ______________

3

Clearly, there is a three-way Case Analysis on the value in A[k]. Assume that R, W, 
and B are variables whose values are whatever we mean by red, white, and blue:

/* Given array A[0..n-1] consisting of only three values (red, white,
   and blue), rearrange A into all red, then white, then blue. */
  /* A[0..w-1] red, A[w..k-1] white, A[b..n-1] blue, for 0≤w≤k≤b≤n. */
      int k = ____; int w = ____; int b = ____;
   while ( condition )
      if ( A[k]==B ) _________
      else if ( A[k]==R ) _________
      else /* A[k]==W */ _________

4

The easiest case is when A[k] is white because merely incrementing k incorpo-
rates A[k] into the white region, and makes progress by shrinking the size of 
A[k..b-1]:

/* Given array A[0..n-1] consisting of only three values (red, white,
   and blue), rearrange A into all red, then white, then blue. */
  /* A[0..w-1] red, A[w..k-1] white, A[b..n-1] blue, for 0≤w≤k≤b≤n. */
      int k = ____; int w = ____; int b = ____;
   while ( condition )
      if ( A[k]==B ) _________
      else if ( A[k]==R ) _________
      else /* A[k]==W */ k++;

5

Suppose A[k] is blue. Then swapping A[k] and A[b-1] moves A[k] to the begin-
ning of the blue region, and moves A[b-1] (an unknown value) to the beginning of 
the unknown region. The boundaries must be updated appropriately to reestablish the 
invariant, and shrink the size of A[k..b-1]. We do this by decrementing b, but leave 
k unchanged because the value we just placed in A[k] is still of unknown color:

/* Given array A[0..n-1] consisting of only three values (red, white,
   and blue), rearrange A into all red, then white, then blue. */
  /* A[0..w-1] red, A[w..k-1] white, A[b..n-1] blue, for 0≤w≤k≤b≤n. */
      int k = ____; int w = ____; int b = ____;
   while ( condition )
      if ( A[k]==B ) {
         /* Swap A[b-1] and A[k]. */
            int temp = A[b-1]; A[b-1] = A[k]; A[k] = temp;
         b--;
         }
      else if ( A[k]==R ) _________
      else /* A[k]==W */ k++;

6

In the remaining case, A[k] is red. Then swapping A[w] and A[k] moves A[k] to the 
end of the red region, and moves A[w] (a white value) to the end of the white region. 



Dutch National Flag · 169

The boundaries must be updated appropriately to reestablish the invariant, and shrink 
the size of A[k..b-1]. This update is done by incrementing both w and k:

/* Given array A[0..n-1] consisting of only three values (red, white,
   and blue), rearrange A into all red, then white, then blue. */
  /* A[0..w-1] red, A[w..k-1] white, A[b..n-1] blue, for 0≤w≤k≤b≤n. */
      int k = ____; int w = ____; int b = ____;
   while ( condition )
      if ( A[k]==B ) {
         /* Swap A[b-1] and A[k]. */
            int temp = A[b-1]; A[b-1] = A[k]; A[k] = temp;
         b--;
         }
      else if ( A[k]==R ) { 
         /* Swap A[w] and A[k]. */
            int temp = A[k]; A[k] = A[w]; A[w] = temp;
         k++; w++;
         }
      else /* A[k]==W */ k++;

7

This step completes the coding of the body. In each of the three cases, we make prog-
ress (reducing the variant expression b-k) while maintaining the invariant.

The condition for continuing to iterate is that the unknown region is not (yet) 
empty:

/* Given array A[0..n-1] consisting of only three values (red, white,
   and blue), rearrange A into all red, then white, then blue. */
  /* A[0..w-1] red, A[w..k-1] white, A[b..n-1] blue, for 0≤w≤k≤b≤n. */
      int k = ____; int w = ____; int b = ____;
   while ( k!=b )
      if ( A[k]==B ) {
         /* Swap A[b-1] and A[k]. */
            int temp = A[b-1]; A[b-1] = A[k]; A[k] = temp;
         b--;
         }
      else if ( A[k]==R ) {
         /* Swap A[w] and A[k]. */
            int temp = A[k]; A[k] = A[w]; A[w] = temp;
         k++; w++;
         }
      else /* A[k]==W */ k++;

8

Finally, we are ready to code the initializations such that the initial unknown 
region is the entire array A[0..n-1], and the other regions are empty. Surely, the 
left boundary of the unknown region is at the left end of the array, so we should set 
k to 0. The other two boundaries are somewhat more difficult to think about, and 
you should sense danger:

☞ Be alert to high-risk coding steps associated with binary choices: “==” 
or “!=”, “<” or “<=”, “x” or “x-1”, condition or !condition, positive or 
negative, 0-origin or 1-origin, “even integers are divisible by 2, but array 
segments of odd length have middle elements”.



170 · One-Dimensional Array Rearrangements

We are dealing with extrema such as empty regions, and these are inherently less 
comprehensible. The left boundary of the blue region is easiest to think about, so 
let’s do it first. If we were (incorrectly) to set b to n-1, then the blue region would 
contain all variables between A[n-1] (i.e., A[b]) and A[n-1] (i.e., the right end of 
the array). How many such variables are there? One, i.e., A[n-1]. So, we are off by 
1. We need to initialize b to n so that the left and right boundaries of the blue region 
are A[n] and A[n-1], respectively. How many variables are there between those 
two boundaries? None!

Now consider the empty white region A[w..k-1] immediately to the left of the 
unknown region. The idea of nothing being somewhere may make your head hurt. 
We have already decided that k will be initialized to 0, so the initial white region is 
A[w..-1]. So, do we initialize w to -1 or to 0? Consider initializing w to -1. Then the 
white region would contain only one element, A[-1]. Yes, yes, we know that there 
are no negative subscripts. But that is not the point. If there were, then initializing 
w to -1 would give us a region of one variable, and that would be wrong. Consider 
initializing w to 0 so that the region is A[0..-1]. That’s the empty region we want. 
All nothing of it. 

This reasoning is sufficiently subtle that it is probably best to bench check it on a 
concrete example, one in which A[0] is white. In this situation, the last case of the 
body of the loop increments k to 1. The white region is all variables between A[w] 
and A[k-1], inclusive, i.e., all between A[0] and A[0]. That the very white cell we 
identified. Bingo!

/* Given array A[0..n-1] consisting of only three values (red, white,
   and blue), rearrange A into all red, then white, then blue. */
  /* A[0..w-1] red, A[w..k-1] white, A[b..n-1] blue, for 0≤w≤k≤b≤n. */
      int k = 0; int w = 0; int b = n;
   while ( k!=b )
      if ( A[k]==B ) {
         /* Swap A[b-1] and A[k]. */
            int temp = A[b-1]; A[b-1] = A[k]; A[k] = temp;
         b--;
         }
      else if ( A[k]==R ) {
         /* Swap A[w] and A[k]. */
            int temp = A[k]; A[k] = A[w]; A[w] = temp;
         k++; w++;
         }
      else /* A[k]==W */ k++;

9

We developed this code with considerable care, and there can be little concern that 
we got it wrong (other than typos, and other such carelessness). But what is the algo-
rithm? Interestingly, it is essentially:

Here’s the invariant (see above). Here’s the variant expression: b-k. Reduce 
the variant to zero while maintaining the invariant, doing the obvious things.

The “algorithm design” consisted of inventing the invariant, and maintaining it.
It is worth reflecting on the adverse consequences, were you to have been seduced 

by a for-loop as coding began. Nothing too terrible, but a bit of extra and unnecessary 
work. We noted above that the choice of determinate iteration would have pushed 
you into the NW invariant, with its more constrained choices:



Partitioning · 171

0 w b k n
A R W B ?

The case of A[k] being blue is handled by the for-loop’s built-in increment of k, and 
the case of A[k] being white is handled by swapping it with B[b] and incrementing b. 
The case of A[k] being red is now more complicated: It can be done with two swaps, 
first B[b] with A[k], and then B[b] with A[w], followed by incrementing w and b.

Running time and space
There is a constant upper bound on the number of steps performed on each iteration 
of the loop, and the total number of iterations is n. Thus, the running time of the 
Dutch National Flag code is linear in n. The work is done in situ, and therefore no extra 
space is required for the values of the array (other than the temp used by swap).

Partitioning
Suppose the three colors of the Dutch National Flag algorithm were properties 
rather than values. In particular, let the tests for red, white, and blue array elements 
be numerical comparisons with a value p known as the pivot. Then the Dutch 
National Flag code is readily modified to implement an algorithm for partitioning 
array A[0..n-1] into three disjoint regions:

0 w b n
A <p ==p >p

Think of all values that are strictly less than p as red, all occurrences of p as white, and 
all values that are strictly greater than p as blue.

We can also generalize the code to work for an arbitrary sub-array A[L..R-1] 
of A[0..n-1]:

L w b R n
A <p ==p >p

And finally, we can package the code as a general-purpose method:

/* Rearrange A[L..R-1] into all <p, then all ==p, then all >p. */
static void Partition( int A[], int L, int R, int p ) {
   /* A[L..w-1]<p, A[w..k-1]==p, A[b..R-1]>p, for L≤w≤k≤b≤R. */
      int w = L; int k = L; int b = R;
   while ( k!=b )
      if ( A[k]>p ) {
         /* Swap A[b-1] and A[k]. */
            int temp = A[b-1]; A[b-1] = A[k]; A[k] = temp;
         b--; 
         }
      else if ( A[k]<p ) {
         /* Swap A[w] and A[k]. */
            int temp = A[k]; A[k] = A[w]; A[w] = temp;
         k++; w++;
         }
      else /* A[k]==p */ k++; 
   } /* Partition */

1



172 · One-Dimensional Array Rearrangements

where we have made the following substitutions in the Dutch National Flag code: “L” 
for “0”, “R” for “n”, “>p” for “==B”, “<p” for “==R”, and “==p” for “==W”. Rather than 
inventing new variable names for the subscripts of the left ends of the “==p” and “>” 
regions, we retain “w” and “b” from the white and blue of the Dutch National Flag 
problem.

Choice of pivot
Clients of Partition are free to choose the pivot parameter, and typically do so 
with the goal of often obtaining “<p” and “>p” regions of similar size.95 How, then, 
do the resulting region sizes depend on the choice of pivot?

In certain cases, Partition doesn’t subdivide A[L..R-1] whatsoever. 
Specifically, if pivot p is smaller than the smallest (resp., larger than the largest) value 
in A[L..R-1], then Partition will create just one “>p” (resp., “<p”) region contain-
ing all values. Similarly, if all of the values in A[L..R-1] are equal to p, Partition 
will create just one “==p” region containing all occurrences of p. Partitioning is 
pointless for such pivots.

Suppose the pivot, p, is a value selected from A[L..R-1]. Then either all val-
ues are equal to p, or there is some other value, q, that is not equal to p. If q<p then 
Partition creates at least two non-empty regions, “<p” and “==p”. On the other 
hand, if q>p then Partition creates at least two non-empty regions “==p” and 

“>p”. So, if we chose as pivot a value in the array, either we discover that all values are 
equal to the pivot, or we have achieved a partitioning into at least two regions.

How might one choose as pivot a value from A[L..R-1] that is likely to partition 
the array into “<p” and “>p” regions that both have a substantial number of elements? 
If the array consists of randomly ordered values, we can pick an arbitrary element, 
say, A[L]. Sometimes this choice will work out well, and sometimes it won’t. But if 
the values are randomly ordered, we can do no better.

But it is unwise to assume that the values in arrays given as arguments to 
Partition are uniformly distributed among the n! possible orderings.96 In fact, it 
is often the case that the argument happens to be sorted, (say) in non-decreasing 
order. In this case, A[L] would be far from a “random” value. In fact, it would be a 
minimal value, and as such the “<p” region produced by Partition will be empty. 
If the array has no duplicates, the “==p” region would then contain only A[L], and 
the “>p” region will contain all the rest of the values. The symmetric problem would 
arise if the array is ordered, and we were to choose A[R-1] as the pivot.

To deal with the possibility that the array will often be ordered, one can choose the 
average of the first and last values, i.e., (A[L]+A[R-1])/2. It does not matter that this 
value is likely not a value that occurs in the array because partitioning will still work 
fine: The “==p” region will be empty, but there will be no harm when that occurs.

Running time and space
Partitioning is a repackaging of the Dutch National Flag problem. Thus, its perfor-
mance is the same: Running time linear in n, the size of the array. No extra space is 
required (other than the temp variable used for swap).

95. Three clients of Partition in the text are QuickSelect (p. 176 ), Linear-Time Median 
(p. 180), and QuickSort (p. 185).
96. The number of permutations, i.e., rearrangements, of n things is n factorial, written n!, 
where n!=n × (n-1) × … × 3 × 2 × 1.



Collation · 173

Collation
Suppose you are given two ordered arrays, and wish to create a third ordered array 
containing the elements of both:

/* Given ordered arrays A and B of lengths na and nb, create ordered
   array C of length na+nb consisting of those values. */

1

The analogy with playing cards helpful. Let A and B be two ordered piles of face-up 
cards. You wish to create a hand of all cards that is ordered. You repeatedly draw the 
smallest card, be it from pile A or pile B, and append it to the accumulated cards in 
your hand (C) . Removing a card from a pile reveals the next card in that pile. You 
break ties arbitrarily in the event of duplicates.

0 ka na
A copied to C ?

0 kb nb
B copied to C ?

0 kc na+nb
C copied from A or B ?

When one of the piles is exhausted, you move the remaining cards from the unex-
hausted pile to your hand, one at a time.

A trigger-happy coder enthralled with for-loops will immediately jump to the 
refinement:

/* Given ordered arrays A and B of lengths na and nb, create ordered 
   array C of length na+nb consisting of those values. */
   for (int kc=0; kc<na+nb; kc++)
      /* Let C[kc] be the appropriate value from A or B. */

pushing all of the complexity of the problem into the body of the one loop. The 
subtleties will involve an interplay between deciding which array to draw from, A or 
B, and dealing with a fully-processed array, be it A or B. However, multiple shallow 
loops are usually easier to understand than single intricate loops. Hence, the follow-
ing initial Sequential Refinement is preferred:

/* Given ordered arrays A and B of lengths na and nb, create ordered
   array C of length na+nb consisting of those values. */
   int C[] = new int[na+nb];            // C[0..kc-1] is collation of
                                        // A[0..ka-1] and B[0..kb-1].
   int ka = 0; int kb = 0; int kc = 0;  // Indices in A, B, and C.
   /* Copy values from A or B into C until one array is exhausted. */
   /* Copy remaining values into C from the unexhausted array. */

2

Each sequential step is then simple to code because there is less to think about at 
once:



174 · One-Dimensional Array Rearrangements

/* Given ordered arrays A and B of lengths na and nb, create ordered
   array C of length na+nb consisting of those values. */
   int C[] = new int[na+nb];            // C[0..kc-1] is collation of 
                                        // A[0..ka-1] and B[0..kb-1].
   int ka = 0; int kb = 0; int kc = 0;  // Indices in A, B, and C.
   /* Copy values from A or B into C until one array is exhausted. */
      while ( ka<na && kb<nb )
         if ( A[ka]<B[kb] ) { C[kc] = A[ka]; ka++; kc++; }
         else { C[kc] = B[kb]; kb++; kc++; }
  /* Copy remaining values into C from the unexhausted array. */

3

Specifically, the condition ka<na && kb<nb guarantees that both A[ka] and B[kb] 
exist.

Refinement of the second step need not explicitly identify which array is not 
exhausted:

/* Given ordered arrays A and B of lengths na and nb, create ordered
   array C of length na+nb consisting of those values. */
   int C[] = new int[na+nb];            // C[0..kc-1] is collation of 
                                        // A[0..ka-1] and B[0..kb-1].
   int ka = 0; int kb = 0; int kc = 0;  // Indices in A, B, and C.
   /* Copy values from A or B into C until one array is exhausted. */
      while ( ka<na && kb<nb )
         if ( A[ka]<B[kb] ) { C[kc] = A[ka]; ka++; kc++; }
         else { C[kc] = B[kb]; kb++; kc++; }
   /* Copy remaining values into C from the unexhausted array, A or B. */
      while ( ka<na ) { C[kc] = A[ka]; ka++; kc++; }
      while ( kb<nb ) { C[kc] = B[kb]; kb++; kc++; }

4

Collation is a key part of MergeSort (p. 188).



175

ChAPTER 10  
Median

The median of a set of ordered data is the “middle value”, i.e., the value m for which 
half the data are less than or equal to m, and half are greater than or equal to m. Given 
an array A[0..n-1] that is ordered, it is trivial to use indexing to find the median: 
A[n/2].97

But what if the array A is not ordered? We could, of course, do a problem reduc-
tion: Sort A[0..n-1], and then select A[n/2]. But sorting is intrinsically more 
complex than finding the median, and we are averse to the idea of “reducing” a prob-
lem to a more difficult one.98

We seek a way to find the median of A[0..n-1] that has a worst-case running 
time that is linear in n. Specifically, what this means is that there is a fixed integer k 
(independent of n) such that it is possible to find the median of A[0..n-1] using 
no more than k·n comparisons (for arbitrarily large n). It is a minor miracle that this 
is possible.99

To get a feel for the challenge involved, stop reading now, and work at trying this 
problem before reading on. The worst-case linear-time median finding algorithm is 
not a method that you already know. Accordingly, the following precept is useless:

☞ Seek algorithmic inspiration from experience. Hand-simulate an algo-
rithm that is in your “wetware”. Be introspective. Ask yourself: What am 
I doing?

Be alert to the possibility that everyday experience is not always a useful guide:

☞ Consider the possibility that your manual approach may be suboptimal, 
and a different approach may be better.

But from where can you hope to find inspiration?

97. When n is even, we select the first value of the greater half rather than the average of the 
two middle values, which is more standard. We choose to omit this fussy detail.
98. It can be shown that if you only have the ability to ask of two values x and y in A[0..n-1] 
whether x is less than or equal to y, i.e., to compare them, then sorting requires a minimum 
of n log2 n comparisons.
99. Constant k turns out to be about 3.33, so this means that if n is a thousand, only 3.33 thou-
sand comparisons are needed, and if n is a million, only 3.33 million comparisons are needed.  
Whether or not this compares favorably with using an n log2 n sorting algorithm, followed by  
direct access to A[n/2], depends on the size of n, and the additional bookkeeping overhead 
of the algorithm we will come up with.



176 · Median

One general-purpose approach that often leads to insight is to seek a fast way to 
divide the problem in half:

☞ Consider Divide and Conquer when designing an algorithm.

For example, Binary Search (p. 143) uses Divide and Conquer to good effect, but 
relies on an array being ordered. Partitioning (p. 171) divides the elements of an 
unordered array into three subsets relative to some pivot value, and may provide the 
linear-time behavior we seek.

A second general-purpose approach is to use an algorithm that is already in hand. 
Accordingly, you can mentally scan known algorithms for relevance, a sort of brute 
force approach to inspiration. The very algorithm we are working on will be in hand 
as soon as we complete it, so it should also be considered available, provided you 
only use it for a proper subset of the data:

☞ Consider recursion when designing an algorithm.

Recursion, when it works, often seems creative and inspired.
A third general-purpose approach to algorithm design is generalization:

☞ Consider generalizing a problem when designing an algorithm.

It is sometimes easier to solve a more general problem, and then specialize it to the 
restricted case of interest than it is to work only on the special case. This is particularly 
true in conjunction with recursion because the subproblems obtained by Divide and 
Conquer often require the more general version of an algorithm for their solution.

We shall present a derivation of the worst-case linear-time median algorithm in a 
way that is designed to suggest how you might have been able to go about inventing 
it yourself by following the general-purpose principles described.

Average-Case Linear-Time Algorithm
The generalization of finding the median of a set of values is known as selection: Given 
a set of n rank-ordered values, we wish to select the jth smallest value of the set. For 
example, the minimal value would be the 0th smallest value, the maximal value would 
be the n-1th smallest value, and the median value would be the n/2th smallest value. 
We assume that the values are given in an unordered array A[0..n-1], and that we 
are free to rearrange A.

Recall the Partitioning algorithm (p. 171), which was based on the Dutch 
National Flag problem (p. 166): Given a value known as the pivot, p, partitioning 
rearranges array A[0..n-1] into three disjoint regions indicated by boundaries w 
and b:

0 w b n
A <p ==p >p

Suppose A[0..n-1] has been so partitioned, for some pivot p. Then there are three 
possible places where the jth smallest value may occur:

0≤j<w. The jth smallest value is the jth smallest value of A[0..w-1].
w≤j<b. The jth smallest value is the pivot, p. 
b≤j<n. The jth smallest value is the (j-b)th smallest value in A[b..n-1].



Average-Case Linear-Time Algorithm · 177

If the jth value is the pivot, we are done. If not, we have only to decide whether to 
focus on the “<p” or the “>p” region of A, and then repeat the process.

You may be thinking of this as an opportunity for recursion, but given that we 
only need to refocus on one of the three regions, recursion is unnecessary. Thus, it 
is not difficult to implement the algorithm iteratively. We start with the code for 
Partition: 

/* Rearrange A[L..R-1] into all <p, then all ==p, then all >p. */
static void Partition( int A[], int L, int R, int p ) {
   ⟨body of Partition⟩
   } /* Partition */

1

and modify it to be QuickSelect by making the following straightforward textual 
changes:

• Change the name of the method from Partition to QuickSelect.
• Change the return type of the method from void to int.
• Introduce a parameter n for the size of the array A.
• Introduce a parameter j to signify the rank order of the value to be selected 

and returned.
• Change parameters L and R be to be local variables of the method rather than 

parameters. Initialize L to 0, and R to n. Note that ⟨body of Partition⟩ remains 
parametric in L and R, which we intend to change with each iteration.

• Change the pivot parameter p to be a local variable of the method rather than 
a parameter, so that it can be computed internally on each iteration.

• Introduce a return-statement to return the jth smallest value of A[0..n-1]. 
This yields the code:

/* Given int 0≤j<n, return j-th smallest in A[0..n-1]. */
static int QuickSelect( int A[], int n, int j ) {
   int L = 0; int R = n;
   int p = /* value of pivot */ ;
   ⟨body of Partition⟩
      return ____;
   } /* QuickSelect */

2

We are now ready to replace the code that implements a single partitioning step: 

int p = /* value of pivot */ ;
⟨body of Partition⟩ 

with code that iterates through a number of partitioning steps while maintaining 
the invariant:

0 L R n
A jth smallest is in here

The replacement code is an instance of the general iterative-computation pattern:



178 · Median

/* Initialize. */
while ( /* not finished */ ) {
   /* Compute. */
   /* Go on to next. */
   }

where 
• /* Initialize. */ is already coded as the initialization of L and R.
• /* Compute. */ is the  single partitioning step.
• /* Go on to next. */ is the code to select the appropriate next region of A.

This yields the code:

/* Given int 0≤j<n, return j-th smallest in A[0..n-1]. */
static int QuickSelect( int A[], int n, int j ) {
   int L = 0; int R = n;
   while ( condition ) {
      int p = /* value of pivot */ ;
      ⟨body of Partition⟩
      /* Go on to “<p” or “>p” region if j-th smallest is there;
         else return p. */
      }
   return ____;
   } /* QuickSelect */

3

If the jth smallest value falls into the “<p” region, focus on that region. If the jth 
smallest value is p, then return p. If the jth smallest value falls into the “>p” region, 
focus on that region.

Recall that the body of Partition sets variables w and b to establish the bound-
aries of the three regions. Accordingly, we can select the next region, as follows:

/* Given int 0≤j<n, return j-th smallest in A[0..n-1]. */
static int QuickSelect( int A[], int n, int j ) {
   int L = 0; int R = n;
   while ( condition ) {
      int p = /* value of pivot */ ;
      ⟨body of Partition⟩
     /* Go on to “<p” or “>p” region if j-th smallest is there; 
        else return p. */
         if ( j<w ) R = w;
         else if ( j<b ) return p;
         else L = b;
      }
   return ____;
   } /* QuickSelect */

4

When we focus on the “>p” region, you may be thinking that some manipulation 
of j is in order because we need to select the (b-j)th element of A[b..n-1]. But we 
are not copying the region over to a new array (with 0-origin). Rather, we are focusing 
on the “>p” region in situ. Thus, we leave j as a subscript in the region whose origin 
in situ begins with the subscript b. In fact, the value of j never changes during the 
execution of the algorithm. Rather, the algorithm merely guides partition selection 



Average-Case Linear-Time Algorithm · 179

so that, in the end, the last partition selected is A[j..j], and the value we seek has 
been moved into A[j].

When the size of the region containing A[j] is less than 2, we stop, and the jth 

smallest value is A[j]:

/* Given int 0≤j<n, return j-th smallest in A[0..n-1]. */
static int QuickSelect( int A[], int n, int j ) {
   int L = 0; int R = n;
   while ( R-L>1 ) {
      int p = /* value of pivot */ ;
      ⟨body of Partition⟩
      /* Go on to “<p” or “>p” region if j-th smallest is there; 
        else return p. */
        if ( j<w ) R = w;
        else if ( j<b ) return p;
        else L = b;
      }
   return A[j];
   } /* QuickSelect */

5

Choice of pivot
Correctness follows from maintenance of the invariant, regardless of how the pivot 
is computed, but termination depends on regions shrinking, which depends in turn 
on the choice of pivot. Section Partitioning (p. 172) discussed the choice of pivot, 
and suggests that (A[L]+A[R-1])/2 be used:

/* Given int 0≤j<n, return j-th smallest in A[0..n-1]. */
static int QuickSelect( int A[], int n, int j ) {
   int L = 0; int R = n;
   while ( R-L>1 ) {
      int p = (A[L]+A[R-1])/2;
      ⟨body of Partition⟩
      /* Go on to “<p” or “>p” region if j-th smallest is there; 
        else return p. */
        if ( j<w ) R = w;
        else if ( j<b ) return p;
        else L = b;
      }
   return A[j];
   } /* QuickSelect */

6

Running time and space
Consider the best case: On each iteration, we happen to select as pivot the median 
of A[L..R-1]. Then the successive regions of QuickSelect will be (approximately) 
halved, and the running time will be proportional to n+(n/2)+(n/4)+ … = 2·n, i.e., 
linear in n.

Consider the worst case: One each iteration, we happen to select as pivot an 
extremum, say, a minimal value of A[L..R-1]. Then the successive regions of 
QuickSelect will be (approximately) only one smaller, and the running time will 



180 · Median

be proportional to n+(n-1)+(n-2)+…+3+2+1 = n·(n-1)/2. In other words, the 
behavior of QuickSelect in the worst case is quadratic in n.

On average, QuickSelect runs in time proportional to n. A careful derivation 
of this property is beyond the scope of the text. Suffice it to say that assuming 
each of the n! permutations of values in the array is equally likely results in an 
expected runtime that is proportional to n. In other words, cases where super-linear 
performance arise are sufficiently infrequent and unweighty as to not blow up the 
linear average.

QuickSelect is in situ, and therefore requires no extra space for the array values 
(other than the temp used by swap).

Worst-Case Linear-Time Algorithm
We have, in hand, a way to compute the median whose running time is, on average, lin-
ear in n: We just call QuickSelect(A,n,n/2). However, we seek a way to compute 
the median that is guaranteed to have linear runtime performance in the worst-case. 

Before delving into algorithmic details, it is worthwhile to consider why we might 
care. Specifically, isn’t QuickSelect good enough? A practical answer is “yes, it is 
almost always good enough”. But the worst-case behavior, when on each iteration 
QuickSelect happens to pick as pivot an absolute pessimal value, is not pleasant: 
Execution time that is quadratic in n. The gnawing fear that we might stumble into 
a situation where the worst case arises motivates us to find an algorithm with a bet-
ter worst-case time bound. We might be willing to pay a little more on average (a 
higher constant of proportionality) to have the assurance that we will never encoun-
ter quadratic behavior. 

A setting where the distinction between average-case and worst-case perfor-
mance might matter is a life-critical real-time application in which an algorithm’s user 
is painfully aware of runtime disparities from one execution to another. It is little 
consolation to tell the widow: Yes, Mrs. Smith, but on average the code would have 
been fast enough to have saved the life of your husband.

A second reason to study the worst-case linear-time median finding algorithm is 
to see what we might learn from it about programming and innovation. How much 
is pure creativity, and how much is just the application of acquired expertise? Let’s 
see what we can learn.

The key insight is that on each iteration of QuickSelect it might be possible to 
choose a pivot value that guarantees that whichever region contains the jth smallest 
value (and is therefore the next region to be considered) shrinks in size by at least 
some specific ratio, r. If such an r exists, we would be guaranteed that the running 
time not counting the time to compute the pivot would be no worse than proportional 
to n+n·r+n·r2+n·r3+… = n/(1-r), for some |r|<1.100 Thus, for example, if r were (say) 
70%, then the sum of lengths of successive regions inspected would be no worse than 
n + n·(7/10) + n·(7/10)2+ n·(7/10)3 + … = (10/3)·n, i.e., linear in n.

Up until now, the pivot has been computed in a constant amount of time, e.g., we 
have used (A[L]+A[R-1])/2, and so this time cost could be ignored. But we are 
now prepared to expend a non-constant effort to come up with a good pivot, pro-
vided the payoff from doing so is sufficient: We want the efforts to partition regions 
plus the efforts to compute pivots to remain worst-case linear in n.

A second intuition derives from considering the best-case choice for pivots: The 

100. This sum is a geometric series. See [43] for a derivation of the closed-form solution, if 
you don’t recall it.



Worst-Case Linear-Time Algorithm · 181

medians themselves. That is, suppose by happenstance we were to always select as 
the pivot the median of A[L..R-1] itself. Then the size of the successive regions 
would be (approximately) halved on each iteration, and the running time would 
be proportional to n + n·(1/2) + n·(1/4)+ n·(1/8) + … = 2·n, i.e., linear in n. But 
happenstance is not sufficient; we seek some way to guarantee that the sizes of the 
regions shrink by a constant ratio.

A third intuition is that there might be a way to pick as pivot a value that is 
“sufficiently close” to the median, i.e., close enough to the median so that the worst-
case behavior of the algorithm is still linear, as if we had happened on the median 
itself. Specifically, perhaps there is an appropriate subset of representative values of 
A[L..R-1] such that their median is guaranteed to be close to the median of the 
whole. If it doesn’t take too long to determine that representative subset of values, 
and if there aren’t too many of them, then we can use the median algorithm itself 
(recursively) to find the median of the representative subset, and hope that the total 
time remains linear in n. The key issue will be the balance between the magnitude of 
the reduction ratio achieved (using the median of the representative subset as pivot), 
and the time required to compute that median. 

The fourth and key intuition is that one can group values of A[L..R-1] into fixed-
size chunks, and use the set of their medians as the representative subset of values. 
This scheme is termed the “median of medians” algorithm.

For example, suppose the chunks were groups of three. Then the following code 
can be used to compute each chunk’s median in constant time:

static int MedianOfThree(int a, int b, int c) {
   if ((a <= b) && (b <= c)) return b;  // a b c
   if ((a <= c) && (c <= b)) return c;  // a c b
   if ((b <= a) && (a <= c)) return a;  // b a c
   if ((b <= c) && (c <= a)) return c;  // b c a
   if ((c <= a) && (a <= b)) return a;  // c a b
   return b;                            // c b a
   } /* MedianOfThree */

Using groups of three, there will be (approximately) n/3 such medians. We can (recur-
sively) use our median finding algorithm on them, and use their median as the pivot 
for the sub-array A[L..R-1]. 

Why might we hope that the median of medians will be a good pivot, e.g., yield 
a guaranteed constant worst-case reduction ratio for the sizes of regions produced 
by partitioning? Let us reason with the aid of a specific example, where the median 
we seek is the emboldened 61:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 60 73 92 57 54 75 59 91 58 71 62 67 66 59 52 61 72 55 60 79

Now imagine that these values were laid out in a two-dimensional array of height 
3 in row-major order, where we have colored the median of each column red. We are 
conducting a “thought experiment”, and do not intend to suggest that the algorithm 
would actually copy the values into a two-dimensional array, or actually perform any 
of the operations we now describe. We are merely imagining the manipulation.

Next, imagine each column of three values were sorted, which would bring the 
individual column medians to the middle row.

Continuing with the thought experiment, imagine rearranging the columns hor-

51 60 73 92 57 54 75
59 91 58 71 62 67 66
59 52 61 72 55 60 79

51 52 58 71 55 54 66

59 60 61 72 57 60 75

59 91 73 92 62 67 79

55 51 52 54 58 66 71

57 59 60 60 61 75 72

62 59 91 67 73 79 92



182 · Median

izontally to be ordered left-to-right by their medians, which would put the median 
of medians, 60, in the central column (green background).

Now color code all cells in the left half of the columns according to whether their 
values are less than or equal to their respective medians (pink), and all cells in the 
right half of the columns according to whether their values are greater than or equal 
to their respective medians (blue). Then all pink-background values are necessarily 
no bigger than the median of medians (green background), and all blue-background 
values are no smaller than the median of medians (green background).101 The remain-
ing values (yellow background) may be smaller, larger, or equal to the median of 
medians, as illustrated. 

Therein lies the power of choosing the median of medians as p, the pivot for par-
titioning: Either the median we seek turns out to fall in the “==p” region (and we 
are done because, in that case, the median is p), or it falls in either the “<p” or “>p” 
regions, which are each guaranteed to contain no more than 2/3 of the values. Thus, 
the median of medians as pivot guarantees that the next region to be considered 
shrinks in size by a constant reduction ratio.

Why 2/3? Without loss of generality, say the median falls in the “<p” region. Then 
the blue-background values are all in the other region (“>p”), and are excluded. The 
blue values are 2/3 of half of the columns in our thought experiment, i.e., 1/3 of all 
values. Thus, the “<p” region can be no larger than 2/3 of the whole. The symmetric 
argument holds if the median falls in the “>p” region, in which case 1/3 of the values 
are pink background, and are excluded from further consideration.

To make this argument very concrete, here are the values of A[L..R-1] before 
partitioning, showing their color coding according to the thought experiment:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 60 73 92 57 54 75 59 91 58 71 62 67 66 59 52 61 72 55 60 79

and here they are after partitioning with a median of medians pivot of 60:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A 51 55 57 54 52 59 59 58 60 60 62 67 66 71 91 61 72 75 92 79 73

To find the median, QuickSelect would have been called with a rank parameter j equal 
to 21/2=10, i.e., we seek the 10th smallest value (0 origin). After partitioning with a 
pivot value of p=60, the 10th smallest value falls in the “>p” region (A[10..20]), so 
we select that region, leaving behind all values in the “<p” region (and all values in 
the “==p” region). By the argument above, the values excluded necessarily include 
all pink ones, which are at least a third of them all.

So, we have achieved half of what we set out to achieve: Using the median of medi-
ans of groups of three as pivot guarantees a constant reduction ratio. We can code 
up this approach, and it will work fine, i.e., it will find the median by looking in con-
secutive sub-arrays that are each no larger than 2/3 the size of the previous one. 

Alas, there is one hitch: There are too many groups of three. Specifically, there 
are fully n/3 such groups, and the recursive call to QuickSelect to find the median 
of their medians dominates the cost, and renders the overall algorithm super-linear. 
Imagine the heart break when it was first realized that the cost of computing the 

101. This property follows by transitivity. In each column, each (pink) value is less than or 
equal to its respective median, which is necessarily also less than or equal to the median of 
medians. The argument for the blue values is symmetric.

55 51 52 54 58 66 71

57 59 60 60 61 75 72

62 59 91 67 73 79 92



Worst-Case Linear-Time Algorithm · 183

pivots (using the median of medians of groups of three) outweighs the benefit of 
the constant reduction ratio achieved. 

But don’t lose heart. What about groups of 5 elements? The guaranteed reduc-
tion will be slightly smaller, 30% instead of 33.3%. Why 30%? Because 3/5 of half of 
the columns are guaranteed to be in the “opposite partition region”, and half of 3/5 
is 3/10. But the cost to compute the pivot as the median of medians is significantly 
reduced because there are only n/5 (rather than n/3) such groups. One way to think 
of this tradeoff is: The change from 33.3% to 30% is relatively small, but the change 
from 1/3 to a 1/5 is relatively large. There is just enough of a marginal advantage to 
render the overall algorithm linear.102 Bingo!

To complete the code, the pivot computation in QuickSelect must be replaced by 
a recursive call to find the median of the medians of  groups of five. Partitioning is in 
situ, but one must also find a way to put all the medians of the groups of five in con-
tiguous elements of an array so that the algorithm can be used on them recursively. 
This data manipulation can also be done in situ in the same array without destroying 
the integrity of the partition for which the median-of-medians will serve as a pivot in 
the next round of partitioning. Writing this code it is left as an exercise.103

Now that you have seen full development of the guaranteed worst-case linear-time 
median finding algorithm, you can judge: Is the invention genius, or workman-like 
expertise?

Running time and space
Some empirical evidence indicates that the cost of guaranteeing linear-time worst 
case selection is about 3x, i.e., the median-of-medians algorithm is on average three 
times slower than QuickSelect [17]. However, there are other claims that it can be 
made competitive, i.e., without penalty [18].

102. Exercise 58.
103. Exercise 57.



184 · Sorting



185

ChAPTER 11  
Sorting

To sort is to arrange values in some designated order. The order may be numerical, or 
lexicographic, or something else you define with your own comparison operation.

In this chapter, we continue to focus on values in an int array A[0..n-1], and 
use the built-in order associated with integers. Sorting arrays of other types of values 
would be similar, and would require no special consideration.

We present four sorting algorithms: QuickSort, MergeSort, Selection Sort, and 
Insertion Sort. Why present four; isn’t one good enough? Actually, none is truly 
needed since every programming language comes equipped with a library imple-
mentation for sorting. 

Our motivation for presenting sorting is pedagogical. The derivations illustrate 
principles: 

• Creativity in code development can be inspired by starting with an invariant.
• Different invariants lead to different algorithms, some better than others.
• Algorithms based on Divide and Conquer can have superior performance.
• Algorithms based on everyday experience can have inferior performance.
• Divide-and-Conquer approaches are naturally implemented by recursive pro-

cedures. 
• Fast algorithms are not necessarily harder to code than slow algorithms.
• Implementations often draw on established code patterns.
• Precise specifications support careful reasoning during implementation.

Sorting is important in its own right because many problems can be reduced to sort-
ing, followed by further processing that is relatively easy once the sequence of values 
in question has been ordered.

The chapter ends with a brief discussion of a property of sorting algorithms called 
stability.

The description of each sorting algorithm is augmented with a link to an enter-
taining online video that shows numbered folk-dancers rearranging themselves 
according to the given method.

QuickSort
Recall the Partitioning algorithm (p. 171) that emerged as an application of the 
Dutch National Flag problem (p. 166): Given a value known as the pivot, p, parti-
tioning rearranges an array A[0..n-1] into three disjoint regions consisting of all 

0 n
A <p ==p >p



186 · Sorting

values of the array that are less than, equal to, and greater than p, respectively. Think 
of A[0..n-1] as Gaul having been divided by Caesar into three parts. The three 
parts, as aggregates, are in numerical order, but within each part the values are in a 
jumble.

Suppose Caesar’s conquest goal were to rearrange the entire array A[0..n-1] into 
non-decreasing order. How would the father of Divide and Conquer have dealt with 
the fact that the left and right regions of the partition are themselves not yet inter-
nally ordered? By applying the Partition algorithm to them individually, of course. 
And so on, and so forth, recursively, until reaching partitions of length 1 or 0, which 
perforce are (trivially) ordered. This is QuickSort.

The code for Partition is in hand:

/* Rearrange A[L..R-1] into all <p, then all ==p, then all >p. */
static void Partition( int A[], int L, int R, int p ) {
   ⟨body of Partition⟩
   } /* Partition */

1

We can start with this code, and edit it to become QuickSortAux, an auxiliary 
method that sorts an arbitrary array region A[L..R-1]:

☞ Don’t type if you can avoid it; clone. Cut and paste, then adapt.

First, we change the name Partition to QuickSortAux, and move the pivot param-
eter into the body of QuickSortAux, where it will be computed internally rather than 
being passed in as a parameter:

/* Choose a pivot p and rearrange A[L..R-1] into all <p, then all ==p, 
   then all >p. */
static void QuickSortAux( int A[], int L, int R ) {
   int p = /* value of pivot */ ;
   ⟨body of Partition⟩
   } /* QuickSortAux */

2

Second, we know that a region A[L..R-1] of length 1 or 0 is already sorted, so 
we return immediately in those cases:

/* Choose a pivot p and rearrange A[L..R-1] into all <p, then all ==p, 
   then all >p. */
static void QuickSortAux( int A[], int L, int R ) {
   if ( R-L>1 ) {
      int p = /* value of pivot */ ;
      ⟨body of Partition⟩
      }
   } /* QuickSortAux */

3

Third, we recurse on the “<p” and “>p” subregions individually. In doing so, we 
use variables w and b established by the ⟨body of Partition⟩ as the subscripts of the 
leftmost elements of the “==p” and “>p” regions, respectively.

0 w b n
A <p ==p >p



QuickSort · 187

/* Choose a pivot p and rearrange A[L..R-1] into all <p, then all ==p, 
   then all >p. */
static void QuickSortAux( int A[], int L, int R ) {
   if ( R-L>1 ) {
      int p = /* value of pivot */ ;
      ⟨body of Partition⟩
      QuickSortAux(A, L, w);
      QuickSortAux(A, b, R);
      }
   } /* QuickSortAux */

4

Fourth, method QuickSort invokes QuickSortAux on the entire array:

/* Rearrange values of A[0..n-1] into non-decreasing order. */
static void QuickSort(int A[], int n) { QuickSortAux( A, 0, n ); }

5

Finally, we need to compute the pivot appropriately. The same considerations 
discussed in Partition (p. 171) and QuickSelect (p. 176) hold. Correctness fol-
lows from the correctness of Partition. Termination follows from an argument 
about the reduction in the lengths of the partitions, which turns on the computed 
value of the pivot. As discussed on pages 172 and 179, an appropriate pivot is 
(A[L]+A[R-1])/2:

/* Choose a pivot p and rearrange A[L..R-1] into all <p, then all ==p, 
   then all >p. */
static void QuickSortAux( int A[], int L, int R ) {
   if ( R-L>1 ) {
      int p = (A[L]+A[R-1])/2;
      ⟨body of Partition⟩
      QuickSortAux(A, L, w);
      QuickSortAux(A, b, R);
      }
   } /* QuickSortAux */

6

This completes the code.
Enjoy the QuickSort dance performance on the web [19]. Can you discern how 

the dancers are choosing the pivot?

Running time and space
On average, the regions produced by partitioning have balanced sizes, and there-
fore grow smaller geometrically. Accordingly, the depth of recursion will on average 
be log2 n. Unlike QuickSelect, sorting requires that we recurse on both partitions, 
so at each level of recursion, the sum of all partitioning will require order n opera-
tions. Accordingly, the average running time of QuickSort will be proportional to 
n log2 n. 

QuickSort works in situ, and therefore requires no extra space for the values of the 
array (other than the temp used by swap in the ⟨body of Partition⟩). It does, how-
ever, require extra storage associated with the recursion.

On average, the deepest recursion will be on the order of log2 n, and therefore 
the amount of extra space required will be proportional to log2 n. However, in the 



188 · Sorting

worst case, when one of the “<p” or “>p” regions repeatedly contains only a single 
value, the recursion may reach a depth of order n.

To reduce this space overhead, rather than recursing on both regions, we can 
recurse only on the smaller of the two, and perform the partitioning of the larger of 
the two regions within the current activation of the procedure, much as is done in 
QuickSelect. This optimization technique, whereby a recursive invocation is replaced 
by a local iteration, is known as tail-recursion.104

MergeSort
QuickSort first partitions the array based on a pivot p, and then recurses on the “<p” 
and “>p” regions, individually. The lengths of the regions depend on the specific val-
ues in the array and the choices of pivots.  Although it has excellent performance on 
average, in the worst case, the region sizes turn out to be disadvantageous, and the 
running time becomes quadratic in n, i.e., proportional to n2.

MergeSort, like QuickSort, is a Divide and Conquer algorithm. However, rather 
than taking its chances on the sizes of subdivisions, MergeSort guarantees balance by 
recursively dividing the array A[0..n-1] into halves, quarters, eights, etc. indepen-
dent of the values in the array. Subdividing stops at the base case, which is a region 
of size 1 or 0 that is perforce ordered.105

 On the way out of the recursions, with a pair of ordered adjacent regions in hand, 
MergeSort uses Collation (p. 173) to interleave values appropriately, and make a 
single ordered region from the pair.

First, we define MergeSortAux following the plan outlined:106

/* Rearrange values of A[L..R] into non-decreasing order. */
static void MergeSortAux(int A[], int L, int R) { 
   if ( R>L ) {
      int m = (L+R)/2;
      MergeSortAux(A, L, m);    // Sort left half.
      MergeSortAux(A, m+1, R);  // Sort right half.
      /* Given A[L..m] and A[m+1..R], both already in non-decreasing
         order, collate them so A[L..R] is in non-decreasing order. */
      }
   } /* MergeSortAux */

1

Second, we provide a main routine, MergeSort, that invokes MergeSortAux:

/* Rearrange values of A[0..n-1] into non-decreasing order. */
static void MergeSort(int A[], int n) { MergeSortAux(A, 0, n-1); }

2

Recall the specification of Collation given in Chapter 9 (p. 173):

/* Given ordered arrays A and B of lengths na and nb, create ordered array C
   of length na+nb consisting of those values. */

104. Exercise 64.
105. As with Binary Search, one of the  two “halves” of a region with odd length is one lon-
ger than the other.
106. Note that we embrace the convention that R is the subscript of the last element of the 
region, as in Binary Search, whereas in QuickSort, it was convenient for R to be the subscript 
of the next element beyond the last, as in Partition.

0 L R n
A ? ordered ordered ?

0 L R n
A ? ordered ?



Selection Sort  · 189

There are several mismatches between our present need and what Collation offers:
First, it assumes that the two sources of values to be collated are separate arrays, 

A[0..na-1] and B[0..nb-1]. In contrast, MergeSort needs those source to be two 
regions of one array, A[L..m] and A[m+1..R]. Inspection of the code for Collation 
reveals that this is a trifling difficulty, and the code is easily modified to draw values 
from A[L..m] and A[m+1..R].107

Second, it assumes that the result is to be placed in a third array C[0..na+nb-1]. 
In contrast, MergeSort needs the result to placed back in the array region A[L..R]. 
This is not easily done in situ, so MergeSort typically uses a second array, and the 
coding challenge revolves around minimizing effort associated with the use of two 
arrays.108

Enjoy the dance of Merge Sort [20]. It is quite easy to follow the algorithm, and 
also to see that it is not in situ.

Running time and space
MergeSort resembles Binary Search in its recursive halving of regions until reach-
ing length one or zero. For a region of length n, halving can only be done at most 
1+log2 n times. Think of the subdivisions in strata. Collating two subregions of length 
(approximately) n/2 takes effort proportional to n. Similarly, collating each pair of 
subregions of length n/4 takes efforts proportional to n/2. Since there are two such 
pairs, the total is again n. Similarly, the total collation effort on each stratum requires 
order n effort. Therefore, the total effort is proportional to n log2 n, worst case, aver-
age case, and every case.

The fact that the running time of MergeSort is guaranteed to always be proportional 
to n log2 n is a distinct advantage over QuickSort. The need for a second array is a 
distinct disadvantage.

Selection Sort 
The key algorithmic idea of Selection Sort is to repeatedly select a smallest of the 
remaining unordered elements, extract it, and put it next in an emerging region of 
correctly-positioned elements. Many people sort this way when ordering a hand of 
playing cards:

/* Rearrange values of A[0..n-1] into non-decreasing order. */ 1

Clearly there is an iteration, and some control variable (say, j) marching across the 
subscripts of the array. Equally clearly, j will start at the left end of A (more or less), 
and will stop at the right end (more or less), so a determinate enumeration seems 
safe:

107. Exercise 65.
108. Exercise 66.

0 n
A

1 + log2 n

0 j n
A



190 · Sorting

/* Rearrange values of A[0..n-1] into non-decreasing order. */
   for (int j = ____; ____; j++) ____________

2

From the top-level description of the algorithm, we understand that we will have 
selected the smallest values of the array, and put them in their correct, final positions. 
The diagram expresses the loop invariant. 

We seek to increase the size of the left region while maintaining the invariant, and 
to do so, will need to place the correct value in A[j] before j is incremented. The 
value to be placed in A[j] must be a minimal value of A[j..n-1], say, one found 
at element A[k]:

0 j k n
A in correct position A[k] is minimal

We can then swap A[j] and A[k]:

/* Rearrange values of A[0..n-1] into non-decreasing order. */
   for (int j = ____; ____; j++) {
      /* Let k be s.t. A[k] is a minimal value in A[j..n-1]. */
      /* Swap A[j] and A[k]. */
      }

3

Because the loop body is fully specified, we can pronounce it (temporarily) done, 
and proceed to code its termination and initialization. Alternatively, we could delay 
doing so until the loop body is fully coded. It shouldn’t really make any difference 
because the statements (actually, statement comments) are complete. Even if we 
were to wait, we would still want to reason with those specifications rather than 
their implementations.

As per the precept on the order of developing loops, the next step is to code ter-
mination. We observe that there is no need to consider a rightmost region of size one, 
e.g., A[n-1..n-1], since it will contain only the last remaining value of the array, 
which perforce must be in its correct, final position. The value in A[n-1..n-1] at 
this point has failed every comparison for minimality, and as a result of (perhaps) 
multiple swaps has been propagated into that position. It is maximal:

/* Rearrange values of A[0..n-1] into non-decreasing order. */
   for (int j = ____; j<(n-1); j++) {
      /* Let k be s.t. A[k] is a minimal value in A[j..n-1]. */
      /* Swap A[j] and A[k]. */
      }

4

Were you to have missed this minor optimization, there would have been no harm: 
You would compute that a minimal value of A[n-1..n-1] is (duh?) A[n-1], which 
you would then swap with A[j], where j happens to be one and the same as n-1, 
thereby causing no net effect. This is fine because it is exactly where it belongs. 

It is noteworthy that the fail-safe aspect of this code, whereby no harm comes 
from executing a last (superfluous) step, derives in part from making sure that all 
code always handles boundary conditions gracefully and correctly. Specifically, when 
implementing the code for

/* Let k be s.t. A[k] is a minimal value in A[j..n-1]. */

0 j n
A in correct position ?



Selection Sort  · 191

you might say: Who would be stupid enough to invoke this code when j is n-1; do 
I really need to code this case, and do so correctly? The answer is “yes”, because that 
person may very well be you.

Moving on to initialization of the control variable j, we observe that there is noth-
ing special about the left boundary of the array, and accordingly j should start at 0:

/* Rearrange values of A[0..n-1] into non-decreasing order. */
   for (int j=0; j<(n-1); j++) {
      /* Let k be s.t. A[k] is a minimal value in A[j..n-1]. */
      /* Swap A[j] and A[k]. */
      }

5

Swap is standard:

/* Rearrange values of A[0..n-1] into non-decreasing order. */
   for (int j=0; j<(n-1); j++) {
      /* Let k be s.t. A[k] is a minimal value in A[j..n-1]. */
      /* Swap A[j] and A[k]. */
         int temp = A[j]; A[j] = A[k]; A[k] = temp;
      }

6

The code for finding the minimal element of a region of an array is essentially the 
same as given in Chapter 9, (p. 140), except that instead of the left boundary of the 
region having index 0, it has index j (shown in blue):109

/* Rearrange values of A[0..n-1] into non-decreasing order. */
   for (int j = 0; j<(n-1); j++) {
      /* Let k be s.t. A[k] is a minimal value in A[j..n-1]. */
         int k = j;
         for (int i=j+1; i<n; i++) if ( A[i]<A[k] ) k = j;
      /* Swap A[j] and A[k]. */
         int temp = A[j]; A[j] = A[k]; A[k] = temp;
      }

7

This completes the code for Selection Sort.
Enjoy the Selection Sort dance [21], which conveys the tediousness of a quadratic 

algorithm excellently. If you watch until the end, you will see that A[n-1] swaps 
with herself, i.e., the dancers run their outer loop one time more than needed.

Running time and space
The running time of Selection Sort is dominated by its inner loop, which (in succes-
sive iteration of the outer loop) iterates (n-1) times, then (n-2) times,  ..., then 2 times, 
then 1 time. As Gauss could have told you, the total number of iterations of the inner 
loop is thus n·(n-1)/2, so the running time of Selection Sort is quadratic in n. 

Selection Sort works in situ, so it requires no extra space (other than temp).

109. There is one other small change in the code: Because we are already using variable j for 
a different purpose, the control variable needs to change from j to i.



192 · Sorting

Insertion Sort 
The key algorithmic idea of Insertion Sort is to repeatedly insert a next array ele-
ment into its proper place in an emerging region of ordered elements. Many people 
(the ones who don’t use Selection Sort) use this algorithm when ordering a hand 
of playing cards:

/* Rearrange values of A[0..n-1] into non-decreasing order. */ 1

Clearly, we need iteration, and some control variable (say, j) marching across the 
subscripts of the array. Equally clearly, j will start at the left end of A (more or less), 
and will be stop at the right end (more or less), so a determinate enumeration is 
appropriate:

/* Rearrange values of A[0..n-1] into non-decreasing order. */
   for (int j= ____; ____; j++) ____________

2

From the top-level description of the algorithm, we understand that the left region 
will be ordered, albeit (unlike Selection Sort) the values are not (yet) necessarily in 
their final positions. The diagram depicts the loop invariant. 

We seek to increase the size of the left region while maintaining the invariant, and 
to do so, need to place A[j] in its correct place within the ordered region A[0..j] 
before j is incremented.

You may be uncomfortable about the phrase “within A[0..j]”, and wonder 
whether it should have been “within A[0..j-1]”? No, because A[j] may be larger 
than all values in A[0..j-1], in which case it belongs exactly where it is:

/* Rearrange values of A[0..n-1] into non-decreasing order. */
   for (int j= ____; ____; j++) {
      /* Given A[0..j-1] ordered in non-decreasing order, rearrange
         values of A[0..j] so it is ordered. */
      }

3

Because the loop body is fully specified, we can pronounce it (temporarily) done, 
and proceed to code the loop termination and loop initialization. 

Termination: Unless the last element of the array, A[n-1] is maximal, it must be 
inserted somewhere to its left, so the last element cannot be skipped:

/* Rearrange values of A[0..n-1] into non-decreasing order. */
   for (int j= ____; j<n; j++) {
      /* Given A[0..j-1] ordered in non-decreasing order, rearrange
         values of A[0..j] so it is ordered. */ 
      }

4

Initialization: A prefix of the array of length one, i.e., A[0..0], is clearly ordered, so 
j can start at 1:

0 j n
A

0 j n
A ordered ?



Insertion Sort  · 193

/* Rearrange values of A[0..n-1] into non-decreasing order. */
   for (int j=1; j<n; j++) {
      /* Given A[0..j-1] ordered in non-decreasing order, rearrange
         values of A[0..j] so it is ordered. */ 
      }

5

This complete the code, except of course that the loop body must be refined.
You may be excited to spot your first opportunity to use Binary Search in an appli-

cation: The prefix A[0..j-1] is ordered, and we need to find where within it A[j] 
belongs. Binary Search is a fast way to figure that out.

But alas, knowing where A[j] belongs, say, at A[k], is only half the battle. The 
other half is shifting array elements to the right to make room to insert A[j]. The 
fast (logarithmic-time) search will be overshadowed by the 
slow (linear-time) right shift, so it’s not worth bothering 
with.

To insert A[j] where it belongs, we first create a “hole” at A[j] by copying it to 
a temporary variable. We then shift A[k..j-1] right one place thereby moving the 

“hole” to A[k]. Finally, we plug that hole with the value from the temporary vari-
able:

/* Rearrange values of A[0..n-1] into non-decreasing order. */
   for (int j=1; j<n; j++) {
      /* Given A[0..j-1] ordered in non-decreasing order, rearrange
         values of A[0..j] so it is ordered. */
         int temp = A[j];
         /* Shift A[k..j-1] right one place, where k is the largest
            integer s.t. A[k-1]≤temp, or 0 if temp is smallest. */
         A[k] = temp;
      }

6

A boundary condition for this code is that A[0..j] is already ordered, i.e., A[j] 
doesn’t have to move because it is maximal in A[0..j]. In this case, the shift right 
will have no effect, and the action of the loop body as a whole will be to copy A[j] 
to temp, and then to copy it right back again to A[j]. Is it worth singling out this 
case for special treatment? No. Quite fortuitously, it takes care of itself. Without even 
thinking about it, we have complied with this precept:

☞ Code the general case first. Then attempt to make the boundary case 
fit the general case, if possible, making as slight a change to the code 
as possible.

We turn now to implementing the shift. The following are intuitive: (a) there is an 
iteration; (b) the iteration is indeterminate because we don’t know when it will stop; 
(c) within the iteration, variable k will be moving from right to left as we seek the loca-
tion at which to insert the value that was originally in A[j]; (d) within the body of 
the loop, there must be an assignment statement that effects the shift of one element 
of the array; and (e) within the body of the loop, variable k must be decremented.

We sketch the code with the part we intuit, and leave blanks for the parts that 
will require care:

0 k j n
A ordered, all ≤ A[j] ordered, all > A[j] ?



194 · Sorting

/* Rearrange values of A[0..n-1] into non-decreasing order. */
   for (int j=1; j<n; j++) {
      /* Given A[0..j-1] ordered in non-decreasing order, rearrange
         values of A[0..j] so it is ordered. */
         int temp = A[j];
         /* Shift A[k..j-1] right one place, where k is the largest
            integer s.t. A[k-1]≤temp, or 0 if temp is smallest. */
            int k = ____;
            while ( ______ ) {
               A[ ____ ] = A[ ____ ];
               k--;
               }
         A[k] = temp; 
      }

7

The sketching technique is in keeping with the safe-coding precept: Only write down 
what you are confident about.

We now have a choice. If we were to follow the precept to code the body of a loop first, 
we would now concentrate on the assignment statement “A[____] = A[____];”.  

Alternatively, we may recognize that we have sketched a backwards sequential 
search for the largest k with a certain property, and a freeloading shifting assignment 
slipped into the search for the ride. From that perspective, we could complete the 
search first, ignoring the shift, and then deal with the shift afterwords.

We favor the latter coding order because this is a case where getting the body right 
intimately depends on the search-loop variable k, and the range of values it takes on. 
And it is even a case where early reasoning about boundary conditions is helpful.

Recall that one of the boundary conditions is that A[j], which we have copied 
to variable temp, may not need to move at all. In other words, in the case where the 
shifting loop iterates 0 times, k must remain at j so that the assignment statement 

“A[k]=temp;” will just put temp back in A[j]. This observation nails the initial-
ization:

/* Rearrange values of A[0..n-1] into non-decreasing order. */
   for (int j=1; j<n; j++) {
      /* Given A[0..j-1] ordered in non-decreasing order, rearrange
         values of A[0..j] so it is ordered. */
         int temp = A[j];
         /* Shift A[k..j-1] right one place, where k is the largest
            integer s.t. A[k-1]≤temp, or 0 if temp is smallest. */
            int k = j;
            while ( ______ ) {
               A[ ____ ] = A[ ____ ];
               k--;
               }
         A[k] = temp; 
      }

8

We are searching (backwards) for a value in the array that is in some relationship to 
temp, the value for which we seek the insertion point. The first such value to com-
pare with temp is A[j-1], and in general, as we decrement k, must be A[k-1]:



Insertion Sort  · 195

/* Rearrange values of A[0..n-1] into non-decreasing order. */
   for (int j=1; j<n; j++) {
      /* Given A[0..j-1] ordered in non-decreasing order, rearrange
         values of A[0..j] so it is ordered. */
         int temp = A[j];
         /* Shift A[k..j-1] right one place, where k is the largest
            integer s.t. A[k-1]≤temp, or 0 if temp is smallest. */
            int k = j;
            while ( A[k-1] ____ temp ) {
               A[ ____ ] = A[ ____ ];
               k--;
               }
         A[k] = temp; 
      }

9

If we first clarify for ourselves that we are writing the condition for iterating, we will 
be clear that the comparison must be either “>” or “>=”. This can be confirmed by 
reflection on the schematic diagram: If the value in A[k-1] is bigger than temp, we 
need to keep searching because temp belongs to the left of that A[k-1].

The equal case is also clarified by reflecting on the diagram: We can stop search-
ing if we find (another) instance of temp because we can insert it last in a run of 
values equal to temp. So the condition should be false if A[k-1] is equal to temp:

/* Rearrange values of A[0..n-1] into non-decreasing order. */
   for (int j=1; j<n; j++) {
      /* Given A[0..j-1] ordered in non-decreasing order, rearrange
         values of A[0..j] so it is ordered. */
         int temp = A[j];
         /* Shift A[k..j-1] right one place, where k is the largest
            integer s.t. A[k-1]≤temp, or 0 if temp is smallest. */
            int k = j;
            while ( A[k-1]>temp ) {
               A[ ____ ] = A[ ____ ];
               k--;
               }
         A[k] = temp; 
      }

10

Last but not least is the boundary condition for the search: In the case where temp 
must be inserted at A[0], i.e., when temp is smaller than all values in A[0..j-1], the 
search must stop with k equal to 0. In this case, the final comparison “A[k-1]>temp” 
would be between A[-1] and temp. Of course, there is no such variable as A[-1], 
and so this comparison must be avoided by an explicit test on k. Colloquially, we 
must prevent falling off the left end of the array:



196 · Sorting

/* Rearrange values of A[0..n-1] into non-decreasing order. */
   for (int j=1; j<n; j++) {
      /* Given A[0..j-1] ordered in non-decreasing order, rearrange
         values of A[0..j] so it is ordered. */
         int temp = A[j];
         /* Shift A[k..j-1] right one place, where k is the largest
            integer s.t. A[k-1]≤temp, or 0 if temp is smallest. */
            int k = j;
            while ( k>0 && A[k-1]>temp ) {
               A[ ____ ] = A[ ____ ];
               k--;
               }
         A[k] = temp; 
      }

11

This completes the search, and we are ready to code the shift.
It is convenient to reason from the example of the very first iteration, where it is 

A[j] that must be filled from A[j-1]. Since k has been initialized as j, a shift that 
fills A[k] from A[k-1] will accomplish that:

/* Rearrange values of A[0..n-1] into non-decreasing order. */
   for (int j=1; j<n; j++) {
      /* Given A[0..j-1] ordered in non-decreasing order, rearrange
         values of A[0..j] so it is ordered. */
         int temp = A[j];
         /* Shift A[k..j-1] right one place, where k is the largest
            integer s.t. A[k-1]≤temp, or 0 if temp is smallest. */
            int k = j;
            while ( k>0 && A[k-1]>temp ) {
               A[k] = A[k-1];
               k--;
               }
         A[k] = temp; 
      }

12

This completes the code.
It is worth reflecting on the coding order we presented, which was the exact oppo-

site of what is called for by: 

☞ Code iterations in the following order: (1) body, (2) termination, 
(3) initialization, (4) finalization, (5) boundary conditions.

From a boundary condition (5), we reasoned out where the search should start (3). 
Then, from another boundary condition, we reasoned out where the search should 
stop (2). Finally, we completed the shift-loop body (1), again leveraging a boundary 
condition to get the subscripts right.

By what rationale did we choose this contrarian order? In a sense, what we really 
did was think of the implementation as a modified instance of the search-and-use 
pattern:

/* Search. */
/* Use the search result. */

The search discovers the location k where A[j] needs to be inserted. The search- 



Stability · 197

client code could have been written as a separate loop, but we performed a code 
optimization known as loop fusion, whereby two consecutive loops with the same 
range can be merged into one.

Enjoy the Insertion Sort dance [22]. If you study the dancers, you will see that 
the code presented in the text is marginally more efficient. The dancers don’t have 
the concept of initially copying A[j] to temp. Rather, they perform insertion by 
successive swaps of neighbors.

Running time and space
The running time of Insertion Sort is dominated by its inner loop. In the worst case 
(given values in decreasing order), it iterates 1+2+…+ (n-1) times, which is qua-
dratic in n. In the best case (given values already in non-decreasing order), the inner 
loop does no work, so the running time of the algorithm is linear in n. In the average 
case, Insertion Sort is quadratic in n.110

Insertion Sort is in situ, so it requires no extra space (other than temp).

Stability
A sort algorithm is stable if it preserves the order of subsequences of equal values. 
You might well ask: What difference does it make? Specifically: How can you tell 
the difference between a stable and an unstable sort? Isn’t one instance of a number 
indistinguishable from another. You are quite right, and are asking a legitimate ques-
tion. Here’s why stability matters.

Sort algorithms, as presented, rearrange values of an int array A[0..n-1]. Let’s 
call these values keys. It is atypical for keys to stand alone. Rather, keys are more often 
paired with associated values. When a sort algorithm sees two equal keys, the corre-
sponding associated values may not be equal. A stable sort algorithm preserves the 
order of a subsequence of key-value pairs with equal keys, and thereby avoids gratu-
itous changes in the order of the associated values in that subsequence.

Chapter 18 presents the needed programming language construct used for rep-
resenting key-value pairs. Until then imagine that keys and values are stored in 
parallel arrays, and that whenever the key array is rearranged, so, too, is the parallel 
value array.

Let’s review each sort algorithm and decide whether it is stable or not:
• QuickSort. Not stable. The Dutch National Flag partitioning algorithm swaps 

values without regard to the effect on stability. For example, the first step in 
rearranging the sequence ⟨B, B′, R⟩ is to swap B and R, resulting in the sequence 
⟨R, B′, B⟩. We have reversed the order of equal values B and B′. Game over.

• MergeSort. The stability of MergeSort follows quite simply from the stabil-
ity of Collation.

• Selection Sort. Not stable. The first key-value pair in the unsorted region is 
swapped with the key-value pair with the minimal key. If there are multiple 
key-value pairs with equal keys, we can be careful to select the leftmost such 
pair. But this doesn’t matter because the swap destroys the order we wish to 
preserve. For example, consider applying Selection Sort to the sequence ⟨3, 
3, 2⟩. When 2 (the smallest value) is swapped with the first 3, it destroys the 
order of the two 3s.

• Insertion Sort. Stable. Each value in the unsorted region of the array is 

110. Offered here without proof.



198 · Sorting

considered in left-to-right order, and each such value is then slotted into the 
appropriate place in the emerging sorted region. When there is a run of keys 
in the sorted region that are equal to the key being moved, we just have to be 
careful to move it to the right end of the sequence.



199

ChAPTER 12  
Collections

Many examples in the text consider entire int arrays:

0 n
A

Why might you have such a thing? It could be a list of grades, or ages, or even just 
integers of mathematical interest. The integers contained in A[0..n-1] are relevant 
for some reason, but we need not really be concerned with why. 

We have heretofore considered all n elements of an array A[0..n-1] as fixed and 
not changing over the course of program execution, but in a typical program this 
is not the case. Rather, the number of relevant items often varies dynamically. For 
example, an array of grades may initially contain none, and as the grades are read 
from the input, starts to fill. Subsequently, the number of grades in the array may 
shrink, e.g., if we were to remove duplicates.

A group of values that changes dynamically during program execution is called a 
collection. This chapter presents three different ways to represent collections: Lists, 
Histograms, and Hash Tables. It ends by discussing Two-Dimensional Arrays.

Lists
The list representation of a collection stores the relevant values in an initial prefix of 
an array, where the length of the prefix is kept in a variable like size: 

0 n
A items of collection unused

si
ze

The currently meaningful elements of A are the prefix A[0..size-1], and the unused 
elements of A are the suffix A[size..n-1]. Whereas up until now, n was consid-
ered to be the number of meaningful values in A, now size plays that role, and n is 
the maximum number of meaningful values that can be stored in A. The slots of the 
suffix are available for the prefix to grow into as values are added to the collection.

In Chapter 3, we called a grouping of variables like A, n, and size a data structure, 
and we provided it with a representation invariant:111 
111. The variable maxSize, which we used in Chapter 3, is replaced here by n, to which we 
have become accustomed. 



200 · Collections

/* A[0..size-1] are the current items in A[0..n-1], 0≤size≤n. */
   int A[];   // receptacle for items in a list.
   int size;  // current # of elements in list, 0≤size≤n.
   int n;     // maximum # of elements storable in the list.

This is the specification we must maintain as items in a collection come and go.
  Abstractly, what does such a structure represent? It is not a set because sets do 

not have repetitions, whereas the list does. It is what is called a multiset, i.e., a set 
with multiplicity. Another word for multiplicity is frequency. Any rearrangement of 
the values in the prefix of A represents the same multiset.112

Given a multiset M and a value v, we would like to be able to invoke various oper-
ations on M, including:113

• Add an instance of v into M, i.e., increase its multiplicity.
• Remove an instance of v from M if it is in M, i.e., decrease its multiplicity.
• Test membership of v in M, i.e., ask if its multiplicity is greater than zero.
• Obtain the multiplicity of v in M.
• Enumerate the elements of M in an arbitrary order, i.e., list them off, repeating 

m times an element with multiplicity m.
Let A be the multiset represented by A[0..size-1], a prefix of A[0..n-1]. We 

can code the various multiset operations as follows, where in each case we are care-
ful to maintain the representation invariant stated above: 

Add. To add a value v to A, append v to the prefix of A that stores the elements 
of the multiset, and increase size:

/* Add v to A. */
   /* Ensure that A has the capacity for another element. */
      if ( size==n ) /* Make room for more values, or sound an alarm. */
   A[size] = v; 
   size++;

The capacity issue is addressed later in the chapter.
Remove. To delete a value v from A, first find it (say, in A[k]), and then elimi-

nate it from the prefix. The auxiliary method indexOf performs a Sequential Search 
to find v:

/* Return k, a location of v in A, or return size if no v in A. */
static int indexOf(int v; int A[], int size) {
   int k = 0; 
   while ( k<size && A[k]!=v ) k++;
   return k;
   }

Since the elements of a multiset are not ordered, there is no need to maintain the 
order of values in the prefix of A by shifting A[k+1..size-1] left one slot to fill the 

“hole” made by deleting v. Instead, we can just move the last element into the hole. 
Thus, rather than using a shift operation that in the worst case would take size-1 

112. The situation is quite analogous to fractions and rationals, in which many different frac-
tions, e.g., 1/3, 2/6, 3/9, etc., all represent the same rational.
113. We are working towards implementation in Chapter 18 of a built-in notion in Java 
known as an ArrayList (p. 303), but for now the similarity should be considered coinciden-
tal and not exact.



Lists · 201

steps (when the value in A[0] is deleted), the operation takes only one step. Note, 
however, that because the value v must first be found, the total number of steps is 
size (in the worst case) anyway. In some cases, the index of the value to be deleted 
will be known, and the indexOf search for it will not be needed. When this is the 
case, just plugging the hole with the last value in the list is advantageous:

/* Remove v from A. */
   int k = indexOf(v, A, size);
   if ( k==size ) /* v is not in A. */
   else { size--; A[k] = A[size]; }

What to do when v is not in A will depend on the application.
When a value (say, at position k) is removed from the collection, and the prefix is 

kept compact by filling the hole at A[k] with the value from the last array element of 
the prefix, that element is no longer part of the collection, and when we decrement 
size that slot effectively moves into the unused suffix. A newly unused slot need 
not be zeroed out, i.e., it can continue holding whatever value it had. We don’t care 
because only elements in A[0..size-1] are considered meaningful at any given 
moment. Thus, when the collection shrinks, detritus is left behind in A[size..n-1], 
but this is of no concern.114

Membership. To test membership of v in A, find (any occurrence of) v in the 
array prefix, if any:

/* Set b to true if v is in A, and false otherwise. */
   int k = indexOf(v, A, size); 
   boolean b = (k<size);

Multiplicity. To find the multiplicity of v in A, run through the entire prefix 
A[0..size-1] and count the number of occurrences of elements equal to v:

/* Set m to the multiplicity of v in A. */
   int m = 0;
   for (int k=0; k<size; k++) if ( A[k]==v ) m++; 

Enumeration. To enumerate the elements of A, list off A[0..size-1]:

/* Enumerate elements of A. */
   for (int k=0; k<size; k++) /* Enumerate A[k]. */

The number of steps required for each of these operations is as follows:

Operation Steps
add constant

remove worst case linear in size
membership worst case linear in size
multiplicity linear in size
enumeration linear in size

114. Such detritus is not a problem for a collection of primitive values of type int, but for a 
collection of references to objects (which are introduced in Chapter 18), the unused suffix of 
the array is best maintained as null values. See section Garbage Collection (p. 313).



202 · Collections

Ordered Lists
In the foregoing section, the order of values in the array prefix A[0..size-1] was 
treated as irrelevant because the list was considered to represent a multiset. An 
alternative point of view is to consider the list to represent an ordered collection. This 
requires introducing a new operation to insert a value v at a given location in the 
ordered collection, and revising the implementation of Remove to maintain order.

Add. It is useful to retain the previous notion of appending a value to the end of 
the list, but then introduce an additional operation for inserting a value v at a specific 
index k. To guard against out-of-bounds indices, we first require that k be legitimate. 
As with adding a value at the end, we must also ensure that there is sufficient capacity 
in A. Then, we shift values in A[k..size-1] right one place to preserve their order, 
and drop v into the hole thereby created. Finally, we increment size to preserve the 
invariant that the elements in the ordered collection are A[0..size-1]:

/* Add v at position k of A. */
   /* Check index. */
      if (k>size) /* Alert: Bad index. */
   /* Ensure that A has capacity for another element. */
      if ( size==n ) /* Make room for more values. */
   /* Shift A[k..size-1] right one place.*/
      for (int j=size-1; j>=k; j--) A[j+1] = A[j];
   A[k] = v; 
   size++;

An astute reader may complain that the code shown does not confirm that k is not 
negative. We deliberately omit this check, and allow the underlying subscript bounds 
check to detect that violation. The same astute reader may be concerned that the 
test for a bad index should be k>=size rather than k>size. We are allowing k to 
equal size, with the interpretation that in this case the item v is being appended 
to the end of the list.

Remove. Given that we now wish to maintain order, it is no longer legitimate 
to merely overwrite the k-th element with the last element. Rather, we must shift all 
values in the prefix A[k+1..size-1] left one place:

/* Remove value in position k of A. */
   /* Check index. */
      if (k>=size) /* Alert: Bad index. */
   size--;
   /* Shift A[k+1..size] left one place. */
      for (int j=k; j<size; j++) A[j] = A[j+1];

Array Overflow
One loose end remains about the representation of a collection in an array: What 
to do when the multiset has grown to the point at which there is no more room for 
another element to be added? This case arises when size becomes equal to n, the 
size of array A. 

The case is easily handled, but first we must let go of a fiction we have been per-
petrating. Specifically, we have consistently depicted arrays by writing the array name 
immediately to the left of the row of variables int[0..n-1], as if it were the name 
of the array itself. In this sense, we depicted an array in the same way that we have 
depicted a scalar (i.e., non-array) variable. But this model is not accurate.

0 n
A

name value

0 k n
A unused

si
ze

0 k n
A unused

si
ze



Lists · 203

In reality, A is the name of a scalar variable whose value is a reference to a separate 
object that is a linear sequence of int variables. The correct picture should have 
been drawn all along as shown at the right. The reference is depicted as a red dot (•) 
at the tail of an arrow that points to the array object int[0..n-1]. It is the array 
object that can be subscripted, not the array reference. When we denote an element 
of an array A by writing A[expression], we really mean:

The variable that is obtained by evaluating expression, and then using that 
integer to index in the array object that is referred to by the value in A.

This point is clarified if we ask: What is the effect of executing this initialized dec-
laration?

int B[] = A;

The answer is not that B become a copy of the entire array referred to by A. Rather, 
only the scalar reference to the array object int[0..n-1] is used to initialize B. The 
state after execution of the declaration really looks as shown to the right. In other 
words, A and B refer to one and the same object int[0..n-1]. The variables A and 
B are said to be aliases of one another, i.e., the names (or more accurately, the con-
tents of the scalar variables with names A and B) both refer to the same “array”.115

The point is driven home by a little puzzle:

int A[] = new int[10];
int B[] = A;
A[0] = 7;
B[0] = 8;
System.out.println( A[0] ); // What does this line print?

If you think it prints 7, then you have not understood; reread the text to understand 
why it prints 8.

With these preliminaries behind us, we complete the implementation of multi-
set add as:

/* Add v to A. */
   /* Ensure the capacity of A for another element. */ 
      if ( size==n ) { A = ensureCapacity(A); n = A.length; }
   A[size] = v; 
   size++;

where ensureCapacity(A) returns a reference to a new array object that contains 
the same values as the array argument A, but is twice as long. The new array object 
provides headroom for more values to be added. The value returned is used to update 

115. The situation is analogous to the planet Venus, which has been known as both the 
Morning Star and the Evening Star because it shines brightly at both times [47]. There is only 
one planet, with two aliases.

The fact that the value of an array variable (say, A) is really a reference (•) to an array object 
explains a mystery about how a method with an array parameter (say, B[]) can change elements 
in the corresponding array argument (say, A): On method invocation, parameter B is initialized 
with the (scalar) reference value (•) contained in A, whereupon A and B become aliases for the 
same array object. Array elements accessed in the method by subscripting B are thereby really 
one and the same as elements of A. Furthermore, the cost of providing an array argument to a 
method is minimal and independent of the size of the array object because the only value cop-
ied is the reference to the array object, not the array elements themselves.

A
0 n

A

B

0 n

morningStar

eveningStar



204 · Collections

A (to point to the new array object), and n is updated with A.length, the length of 
the new array object.

The code for add points out a drawback of a convention we have been following: 
That the length of the array is stored in a separate variable, say, n. This convention has 
been a convenient simplification in our presentations, but now means that we must 
update n separately. We could have been using A.length instead of n all along.

Here is the code for ensureCapacity:

/* Return a reference to a copy of A in an object that is twice as long. */
static int[] ensureCapacity( int A[] ) {
   /* Make B refer to an object that is twice as long as A. */
      int B[] = new int[2*A.length];
   /* Copy the values from A (the old object) to B (the new object). */
      for (int k=0; k<A.length; k++) B[k] = A[k];  
   return B;
   } /* ensureCapacity */

When the array representing a multiset is doubled in length, the cost of doing so 
is proportional to the length of the array. The values in the old array must be cop-
ied into the new array, but the new array (in Java) is first initialized to all 0s. So, the 
number of steps required for doubling is proportional to the length of the new array. 
One way to think about this cost is to amortize it across all of the insert operations 
that led to the need to double the array in the first place. Think of it as if each insert 
operation that didn’t require an immediate array doubling took a little longer, but 
only a constant time longer.116

Critique
We have presented code for maintaining a collection in an array, but something 
very important is missing: The notion of such a collection as a first-class value with 
which to compute. In particular, there is no way to treat the data structure as a single 
entity. Rather, it is made up of an array (A), a current size (size), and a maximum 
size (n). In short, it consists of dribs and drabs, and there is no way to talk about it 
as one thing.

Furthermore, there is no way to enforce maintenance of the collection’s repre-
sentation invariant; rather, we have to rely on the uncertain skill and self-discipline 
of the collection’s clients.

What is needed is a linguistic mechanism that hides the implementation details 
behind an abstraction barrier (where the separate components of the data structure 
will be inaccessible to the clients), and that also provides a mechanism to access the 
data structure as a single entity.

The needed notions are deferred until Chapter 18 Classes and Objects. Until then, 
we can make do with self-discipline, and suffer the awkwardness caused by the inabil-
ity to refer to a data structure as a whole.

116.  The amortization-of-effort argument does not consider the possible requirements of 
a real-time or interactive application. Specifically, the cost of making the copy occurs in a burst, 
and places a short-term demand on the computer that may prevent it from meeting an obliga-
tion to be highly responsive at all times. You may have noticed momentary delays in interactive 
programs, which can be caused by a phenomenon such as array doubling. Two consecutive 
operations that each require a list insertion seem similar and innocuous; the first is instanta-
neous, but the second must double the array size, and thereby causes a hiccup in responsiveness.



Histograms · 205

Histograms
Suppose the values of a multiset M are known to be integers in a restricted range 0 
to maxValue. Then M can be represented in array H[0..maxvalue], where H[k] 
is the frequency of k in M. Such a representation is called a histogram.

We previously used histograms for statistical analysis (p. 101), but they are also 
a perfectly fine way to represent a multiset of integers (in a given range). Whereas 
the list representation of multisets only consumes space for the maximum num-
ber of items in the multiset, the histogram representation consumes space for each 
value in the range of possible values, and then consumes no additional space as the 
multiset grows.

We can now re-implement the unordered collection operations using the histo-
gram representation. Call the multiset so represented H: 

Add. To add a value v to H, increment its multiplicity:

/* Add v to H. */
   H[v]++;

Remove. To delete a value v from H, first confirm that its current multiplicity 
is positive, and then decrement it:

/* Remove v from H. */
   if ( H[k]==0 ) /* Alarm: attempt to remove a value not in H. */
   else H[k]--;

Membership. To test membership of v in H, evaluate the condition H[v]>0, i.e., 
no search is required whatsoever.

/* b = true iff v is in H. */
   boolean b = (H[v]>0);

Multiplicity. The multiplicity of v in H is exactly what H is all about:

/* m = Multiplicity of v in H. */
   int m = H[v];

Enumeration. To enumerate the elements of H, the entire range must be 
scanned, and for each element k with positive multiplicity H[k], k must be enumer-
ated that many times:

/* Enumerate elements of H. */
   for (int k=0; k<=maxValue; k++)
      for (int j=1; j<=H[k]; j++) 
         /* Enumerate k */

The number of steps required for each of the operations is as follows:

Operation Steps
add constant

remove constant

membership constant

multiplicity constant

enumeration linear in maxValue + number of elements in the multiset

m
ax

Va
lu

e

0 1 2 3 …
H



206 · Collections

The first four operations are each implemented in a constant number of steps, inde-
pendent of the size of the multiset.117 This efficiency is achieved at the expense of 
(potentially) a lot more storage, and a (potentially) slower enumeration.

Not all multisets can be represented by histograms because there are limitations 
on their use:

• Integer items. Elements of the multiset must be integers. In contrast, lists can be 
used to store any type of value, and Sequential Search can be used to find values 
of any type in a list, provided an equality operation is provided for that type.

• Limited range. The integer elements of the multiset must lie in a limited 
range of values, a range for which there is enough memory for the histogram, 
H[0..maxValue]. Note, however, that a range that doesn't begin at 0 can be 
translated to such a range. The size of the range is what matters, not its origin. 

• Slow enumeration. Operations for inserting, deleting, testing membership, and 
reporting multiplicity are fast, but at the cost of making the enumeration opera-
tion (possibly) very slow. Think of a short list of values in a very large range, and 
you will appreciate the (possible) downside of the histogram representation.

• Associated values. The histogram representation of a multiset does not provide an 
obvious way to represent the associated value components of ⟨key,value⟩ pairs. 
In contrast, to represent a multiset of ⟨key,value⟩ pairs in the list representation, 
not just integer keys, one can store the keys in one array, say, A[0..n-1], and 
the values in a parallel array, say, B[0..n-1]. Alternatively, array A can contain 
references to ⟨key,value⟩-pair objects, and the implementation of the multiset 
operations can be adapted to inspect the key fields of those objects.118

The restrictions listed are certainly not fatal because there are many settings in which 
the limitations and tradeoffs of the histogram representation are unimportant, and 
the benefits are compelling. The limitations of histograms are all addressed by Hash 
Tables, which are described later in this chapter.

Bit Vectors
A Boolean-valued histogram can be used to represent a set, in which case the 
histogram is known as a bit vector. The histogram array H is initialized to all false, rep-
resenting the empty set, and operations add and remove maintain the invariant “k in 
set H iff H[k] is true”, i.e., “add k” is implemented by the assignment “H[k]=true;” 
and “remove k” is implemented by the assignment “H[k]=false;”.

Example: Ramanujan Cubes, continued
Recall the problem of confirming the claim by Ramanujan that 1729 is the smallest 
integer that can be expressed as the sum of two positive cubes in two different ways. 
The program we began (p. 125) was:

117. The constant-time performance of these histogram operations is a direct consequence 
of the histogram’s implementation as an array, e.g., consecutive bytes in a Random Access 
Memory (p. 30), and the constant-time access to the bytes of such a memory. Which bytes 
are accessed for the kth element of the histogram is determined by address arithmetic in which 
the base address of the array is added to 4*k, where 4 is the number of bytes in an int. 
118. You don’t yet know about how such pair objects can be made. This is covered in 
Chapter 18 Classes and Objects.



Hash Tables · 207

/* Confirm Ramanujan’s claim that 1729 is the smallest number that is the
   sum of two positive cubes in two different ways. */
   /* Record the values of r^3+c^3 that arise for all sets {r,c} of 
      distinct positive integers that are no larger than 12. */
      [0..12][0..12] in row-major order.*/
      for (int r=2; r<13; r++)
         for (int c=1; c<r; c++) 
            /* Keep track of having seen r^3+c^3. */
   /* Confirm that 1729 is the smallest integer that arose twice. */

1

and was used to illustrate a row-major-order enumeration of integer pairs. However, 
now armed with the technique of using a histogram to represent a multiset, we can 
complete the code:

int N = 12*12*12+11*11*11+1;  // (Max r)^3+(max c)^3+1, for r!=c in [0..12].
int H[] = new int[N];         // H[k] = # of {r,c}, r!=c, s.t. k=r^3+c^3.
/* Confirm Ramanujan’s claim that 1729 is the smallest number that is the
   sum of two positive cubes in two different ways. */
      /* Let H be a histogram of r^3+c^3, for each set {r,c} of distinct
         positive integers that are no larger than 12. */      
         for (int r=2; r<13; r++)
            for (int c=1; c<r; c++) 
               H[r*r*r+c*c*c]++;
   /* Output non-zero bins of histogram H. */
      for (int k=0; k<N; k++)
         if ( H[k]>0 ) System.out.println(k + " " + H[k]);

2

Manual inspection of the program output confirms that the smallest k for which 
H[k]>1 is H[1729]. Alternatively, we can automate the inspection by finding the 
smallest k for which H[k]>1, and confirming that H[k]==2 and k==1729:

int N = 12*12*12+11*11*11+1;  // (Max r)^3+(max c)^3+1, for r!=c in [0..12].
int H[] = new int[N];         // H[k] = # of {r,c}, r!=c, s.t. k=r^3+c^3. 
/* Confirm Ramanujan’s claim that 1729 is the smallest number that is the
   sum of two positive cubes in two different ways. */
   /* Let H be a histogram of r^3+c^3, for each set {r,c} of distinct
      positive integers that are no larger than 12. */
      for (int r=2; r<13; r++)
         for (int c=1; c<r; c++) 
            H[r*r*r+c*c*c]++;
   /* Let k be smallest index s.t. H[k]>1. */
      int k=0;
      while ( H[k]<2 ) k++;
   if ( H[k]==2 && k==1729 ) System.out.println( "confirmed" );
   else System.out.println( "not confirmed" );

3

Hash Tables
A hash table, sometimes referred to as a hash set, can be viewed as a representation 
of a collection with the benefit of direct, indexed access (like histograms), and the 
ability to store values of arbitrary type (e.g., as in a list). All the limitations of histo-
grams are resolved with hash tables. 



208 · Collections

We present hash tables starting with histograms, and then make five changes:119
First, we replace the frequency count stored in each element of the histogram, 

H[k], with a reference to an individual array that lists the items of the multiset with 
a given key value k. In general, the size of each array, nk, and the number of elements 
in the array prefix, sk, will differ. Each H[k] is called a bucket.

Second, we relax the requirement that the integer elements of the multiset are 
limited to the range 0 through maxValue; rather, we allow any positive values of 
type int. We don’t want array H to be that big, so rather than indexing H by key k, 
we index it by hash(k) mod hSize, where hash is a function that maps any possi-
ble key value into the range 0 through 231-1. This many-to-one mapping frees us to 
make H whatever size we want. 

……

3

2

1

0

H

hSize

n3s3

unuseditems
n2s2

unuseditems
n1s1

unuseditems
n0s0

unuseditems

A good hash function thoroughly scrambles keys, and results in a high likelihood that 
the number of items in each bucket will be (nearly) uniformly distributed. Because 
items with different keys may map to the same bucket, which is known as a collision, 
a Sequential Search in the bucket’s array will be needed to find items with a given 
key k within a given bucket.

Third, we observe that with the introduction of a hash function, there is no lon-
ger any reason to restrict attention to int keys. The domain of function hash can be 
any datatype, e.g., pairs of integers, or strings of characters. As long as function hash 
maps such keys into integers, we get the benefit of direct access via H. 

Fourth, we note that after identifying the array of items for a bucket, processing 
reverts to Sequential Search. However, because the arrays are far shorter, the average 
time to search the array is drastically reduced—provided we set an appropriate size 
for H. If H is too short, the individual arrays will be too long. In the limit (when H is 
way too short), the benefit of direct access via H is totally lost, and we revert to main-
taining the multiset in a single array. If H is too long, it will be too sparsely populated, 
with many empty buckets and much wasted space in H. We seek a happy medium, 
which can be accomplished by dynamically keeping track of the total number of 
items in the table, and adjusting the length of H so that the lengths of the bucket 
arrays remain, on average, no worse than some given constant. Typically, when the 
threshold is crossed, we double the length of H. Because changing hSize scrambles 
hash values, the doubling requires that individual items be redistributed to differ-
ent buckets. The cost of doubling H as a hash table grows can be amortized across all 
insertions that caused it to grow. This accounting device results in a constant-time 
cost per item lookup, the same as with the original histogram. 

Finally, we observe that something must be done whenever an individual array, 

119. This section presents the principles underlying hash tables. In Chapter 18, we present 
the built-in notion in Java known as a HashSet (p. 315), but for now the similarity should 
be considered inexact.



Two-Dimensional Arrays · 209

say, bucket b, uses up its available space, i.e., when sb reaches nb. Array doubling, as 
described earlier in the chapter, could be used. Typically, however, the items in a bucket 
are not stored in arrays. Rather, each item is stored in a separate block of dynamically 
allocated storage, and the items of the bucket are chained together in a linearly- 
linked fashion:

item item item item item item

item

item item

……

3

2

1

0

H

hSize

This linked representation of buckets obviates the need for array doublings for indi-
vidual buckets.

Two-Dimensional Arrays
Now that it has been revealed that a one-dimensional array is really a reference (•) 
to an array object, and we have seen in Hash Tables an example of an array each of 
whose elements is an array, it is time to fess up to the fact that a two-dimensional 
array is really a reference to a one-dimensional array object whose elements are ref-
erences to one-dimensional array objects.

Thus, the two-dimensional array declaration:

int A[][] = new int[3][3];

really creates this structure:

2

1

0
0 1 2

0 1 2

0 1 2

A

which is strikingly similar to the (initial) structure of a Hash Table (developed 
above).

 As illustrated by Hash Tables, the lengths of each one-dimensional “column array 
object” need not be the same. When this occurs, the array is known as ragged. 

For example, the following code creates a 3-by-3 triangular array:

int A[][] = new int[3][];
for (int r=0; r<3; r++) A[r] = new int[r+1];

Chapter  2 (p. 31) described the layout of a one-dimensional array in a byte-
addressable memory as looking like this:



210 · Collections

 0 1 2base address

where a “reference to an array object” can be understood as the base address of the 
array in memory. Similarly, the triangular array created by the above code can be 
understood as this memory layout:

c2c1c0

0 1 c0base c1
address2 c2

where c0, c1, and c2 are the base addresses of the three column arrays of lengths 1, 
2, and 3 (respectively), which can be located anywhere in the memory, and in any 
order.120

120. A ragged 2-D array is used to advantage in Chapter 17 Graphs and Depth-First Search. A 
graph is a collection of nodes with edges between them. In the edge-list representation of a graph, 
nodes are integers, n, and the list of edges from each node n is stored as a one-dimensional “col-
umn” array that is referred to in element n of the one-dimensional “row” array. The elements of 
the graph, viewed as a 2-D array, are integers, i.e., the target nodes of edges.

In contrast to the edge-list representation of a graph, an adjacency matrix represents a graph 
in a square 2-D boolean array G, where G[n][m] is true if and only if there is an edge from 
node n to node m. 



211

ChAPTER 13  
Cellular Automata

In the 1940s, von Neumann121 and Ulam conceived of a two-dimensional model of 
space known as a cellular automaton [23]. In this model, the Universe consists of a 
rectangular grid of cells, each in a given state. Time advances in discrete steps, with 
each cell deciding synchronously what state it will enter at the next clock tick based 
on its current state and the current states of its neighbors. Each cell makes its deci-
sion independently, but all cells follow the same rules in doing so. 

This chapter presents cellular automata for the purpose of illustrating the manipu-
lation of two-dimensional arrays. It is also chock full of for-statements, their constant 
companions. It is important that you be totally comfortable with nested iteration, and 
the sample code herein (with for-statements nested five deep!) should help in this.

Cellular automata are an interesting concept in modern physics because some 
believe that space in the Universe (the real one) is effectively a cellular automaton, 
and that the model is a viable candidate for how the Universe works [24]. 

An issue that concerned von Neumann was whether a local configuration within a 
cellular automaton could reproduce. More precisely, the question was whether there 
exists an initial configuration of cells in various states, and rules whereby those cells 
transmogrify, such that after some finite period of time, two copies of that same con-
figuration would exist side by side. And similarly, after still more time, there would 
be four copies of the configuration, then eight, and so on. von Neuman succeeded 
in devising such a machine with 29 states [25]. Only a few years later, Watson and 
Crick discovered DNA, with its similar ability to self-replicate.

In 1970, John Conway devised a 2-state cellular automaton that is more biological 
than physical. The two states are called alive and dead, and Conway’s rules determine 
which cells live, die, and are born in each generation [26]. 

The code developed in this chapter first establishes a general framework for sim-
ulating any cellular automaton, and then focuses on Conway’s Game of Life as a 
specific example. The development illustrates the top-down programming style 
advocated in the text. 

121. John von Neumann [45] was a towering figure of the 20th century who played vital 
roles in Mathematics, Logic, Physics, the Manhattan Project (which created the first atomic 
bomb), Game Theory (he invented it), and development of the earliest computers built in the 
United States [48].



212 · Cellular Automata

Top-level Code Structure
In general, a program is a collection of classes, but the program we will write is sim-
ple enough to require only one:

/* A cellular automaton. */
class CellularAutomaton {
   } /* CellularAutomaton */

1

Method main of this class will contain the automaton simulator:

/* A cellular automaton. */
class CellularAutomaton {
   /* Simulate a cellular automaton. */
   static void main() {
      } /* main */
   } /* CellularAutomaton */

2

The empty template for method main is where we begin.
The fundamental pattern for iterative computation:

/* Initialize. */
while ( /* not finished */ ) {
   /* Compute. */
   /* Go on to next. */
   }

would be appropriate if we want to simulate an indefinite number of generations. 
We could use the condition true if we want to run until manually interrupting exe-
cution.

We choose instead to iterate a fixed number of generations:

/* Initialize. */
for (int generation=1; generation<=LAST_GEN; generation++)
   /* Compute. */

This pattern provides the top-level structure for method main.
Following the precept:

☞ Many short procedures are better than large blocks of code.

we introduce three methods: One for creating the initial Universe, one for displaying 
it, and a third for updating it to be the next generation. We assume that generation 
will be declared at the level of the class so that it can be accessed for display pur-
poses:



Data Representation · 213

/* A cellular automaton. */
class CellularAutomaton {
   static int generation;                        // Generation number.
   /* Simulate a cellular automaton. */
   static void main() {
      /* Create the initial Universe and display it. */
         Initialize();
         Display();
      /* Simulate and display remaining generations. */
         for (generation=1; generation<=LAST_GEN; generation++) {
            /* Update Universe to next generation and display it. */
               NextGeneration();
               Display();
            }
       } /* main */
   } /* CellularAutomaton */

3

Having conceived of three methods, we immediately write their stubs to get that 
out of the way:

/* A cellular automaton. */
class CellularAutomaton {
   ...
   /* Create the initial Universe. */
      static void Initialize() { } /* Initialize */
   /* Display the Universe. */
      static void Display() { } /* Display */
   /* Update Universe to be the next generation. */
      static void NextGeneration() { } /* NextGeneration */
   ...
   } /* CellularAutomaton */

4

We are proceeding in a strictly top-down fashion, which also happens to follow the 
precept:

☞ Defer challenging code for later; do the easy parts first.

Entering boilerplate stubs for methods is mindless, and we might as well get it out 
of the way while warming up.

Data Representation
The Universe of the automaton is unbounded, but we are going to want to watch a 
finite piece of it evolve within the (finite) output console. Accordingly, we declare an 
M-by-N array old[][] to represent the region of the Universe being modeled, where 
M and N are defined constants of the program. 

Each cell determines its next state synchronously, so it will not be possible to 
update old[][] in situ. Said differently, the simulation must proceed as if all cells 
determine their next state simultaneously and in parallel, but because our simulation 
is sequential, we cannot update cells in situ because doing so would interfere with the 
decision of neighboring cells yet to be simulated. Accordingly, we declare next[][], 
a parallel Universe in which to compute the next generation:



214 · Cellular Automata

/* A cellular automaton. */
class CellularAutomaton {
   static final int M = 6;                       // Height of Universe.
   static final int N = 20;                      // Width of Universe.
   static int old[][] = new int[M][N];           // old Universe.
   static int next[][] = new int[M][N];          // next Universe.
   static final int LAST_GEN = 50;               // Last generation.
   static int generation;                        // Generation number.
   ...
   } /* CellularAutomaton */

5

These variables are declared within the same class as the methods we are writing, and 
accordingly are accessible to them.122

Display
To output a two-dimensional array, it is commonplace to use a row-major order enu-
meration, which pattern should be absolutely second nature to any programmer. It 
is convenient to provide a header that separates one generation from the next:

/* Display Universe old[][] as an M-by-N grid. */
static void Display() {
   System.out.println( "Generation: " + generation );
   for (int r=0; r<M; r++) {
      for (int c=0; c<N; c++) System.out.print( old[r][c] + " " );
      System.out.println();
      }
   } /* Display */

6

With Display in hand, we can execute the code. We have an empty Universe, and 
no rules that update cells. Only outer space. But the simulation runs without error.

Update
In general, the rules for updating the state of a cellular automaton can be defined in a 
function F that maps the cell’s current state, old[r][c], and that state’s neighbors, to 
its new state, next[r][c]. It is common to consider eight neighbors, i.e., to include 
diagonal neighbors, in which case F is a function of nine arguments. Restricted 
notions of neighborhood could be considered, e.g., only four:

/* Update old[][] to be the next generation of the Universe. */
static void NextGeneration() {
   /* Determine each state of next[][] as F(old[][] states). */
      for (int r=0; r<M; r++)
         for (int c=0; c<N; c++)
            /* next[r][c] = F( old[r][c] and its neighbors ); */
   /* Swap old[][] and next[][] Universes. */
      int temp[][] = old; old=next; next=temp;
   } /* NextGeneration */

7

122. The modifier final on a declaration signifies that the variable has its final value, i.e., it is 
a constant. The convention in Java, as in many other programming languages, is that the names 
of such constants are all capital letters.



Game of Life · 215

It is very pleasant to see the application of arrays as references, whereby the swap 
of the references old and next supports adopting a new Universe in a con-
stant-time operation. The two M-by-N arrays are allocated once and for all when 
class CellularAutomaton is instantiated (at the beginning of the program’s exe-
cution), and thereafter each generation switches back and forth between use of one 
or the other of them. See Chapter 12 (p. 202) if this code is mysterious to you.

We are deferring, for now, the question about how to handle the neighbors of 
cells at the edge of our finite portion of an infinite Universe.

This step completes the framework for arbitrary cellular automata with integer 
states. You may wish to experiment with various functions F, but we will move on 
to the Game of Life.

Game of Life
As mentioned in the chapter introduction, the Game of Life is a set of rules for a 
cellular automaton with only two states: alive and dead. The rules are as follows:

• Live cells with two or three live neighbors survive, other live cells die.
• Dead cells with three live neighbors come alive; other dead cells stay dead.

Because there are only two states, the general framework is specialized to model 
a Universe of boolean rather than int cells. We use false to represent dead, and 
true to represent alive. By virtue of Java’s default initialization of boolean variables 
to false, we automatically start out with two Universes of dead cells:

/* A cellular automaton. */
class CellularAutomaton {
   static final int M = 6;                       // Height of Universe.
   static final int N = 20;                      // Width of Universe.
   static boolean old[][] = new boolean[M][N];   // cell true iff alive.
   static boolean next[][] = new boolean[M][N];  // cell true iff alive.
   static final int LAST_GEN = 50;               // Last generation.
   static int generation;                        // Generation number.
   ...
   } /* CellularAutomaton */

8

Rather than printing each cell as true or false, we also modify method Display so 
that it uses “X” for alive, and “_” for dead:

/* Display Universe old[][] as an M-by-N grid. */
static void Display() {
   System.out.println( "Generation: " + generation );
   for (int r=0; r<M; r++) {
      for (int c=0; c<N; c++)
         if ( old[r][c] ) System.out.print( "X" );
         else System.out.print( "_" );
      System.out.println();
      }
   } /* Display */

9

The obvious two-step Sequential Refinement of the code to compute next[r][c] 
for each old[r][c] is an instance of the compute-use pattern:



216 · Cellular Automata

/* Compute. */
/* Use. */

Specifically: 

/* Update old[][] to be the next generation of the Universe. */
static void NextGeneration() {
   /* Determine each state of next[][] as Life(old[][] states). */
      for (int r=0; r<M; r++)
         for (int c=0; c<N; c++) {
            /* Let liveNeighbors be number alive around old[r][c]. */
            /* Set next[r][c] according to the birth and death rules. */
            }
   /* Swap old[][] and next[][] Universes. */
      int temp[][] = old; old=next; next=temp;
   } /* NextGeneration */

10

The easiest way to examine the eight neighbors of old[r][c] is to inspect the 
3-by-3 region centered there, and ignore the cell in the middle. We will increment 
the liveNeighbors counter for each such cell that is alive. Take pride in the fact 
that the statement that will perform that increment is five for-loops deep (count-
ing the loop that steps through generations), and you are not at all troubled. You are 
learning to comprehend computational structures hierarchically, and are taking it 
in your stride.

The code to compute next[r][c] is a straightforward four-way Case Analysis 
that follows the rules.

/* Update old[][] to be the next generation of the Universe. */
static void NextGeneration() {
   /* Determine each state of next[][] as Life(old[][] states). */
      for (int r=0; r<M; r++)
         for (int c=0; c<N; c++) {
            /* Let liveNeighbors be number alive around old[r][c]. */
               int liveNeighbors = 0;
               for (int dr=-1; dr<=+1; dr++)
                  for (int dc=-1; dc<=+1; dc++)
                     if ( (dr!=0||dc!=0) && old[r+dr][c+dc] )
                        liveNeighbors++;
            /* Set next[r][c] according to the birth and death rules. */
               if ( old[r][c] ) /* Currently live. */
                  if ( liveNeighbors==2 || liveNeighbors==3 )
                     next[r][c] = true;
                  else next[r][c] = false;
               else /* Currently dead. */
                  if ( liveNeighbors==3 ) next[r][c] = true;
                  else next[r][c] = false;
            }
   /* Swap old[][] and next[][] Universes. */
      int temp[][] = old; old=next; next=temp;
   } /* NextGeneration */

11

If your trigger finger hits the “execute button”, you will be sorely disappointed: We 
have followed the admonition to defer boundary conditions until dead last, and have 



Game of Life · 217

not yet taken them into account. What is the problem? The upper-leftmost neigh-
bor of old[0][0] is cell old[-1][-1], which causes a “subscript-out-of-bounds” 
exception. In fact, the entire outside boundary of our finite portion of the Universe 
is surrounded by such out-of-bounds cells!

The motivation for deferring consideration of boundary conditions is the hope 
that once the code for the general case is in place, it will be possible to slip some-
thing in “surgically”. The offending code is the expression that is colored blue, above. 
Those are the subscripts with potential to go out of bounds. 

A common technique for a simulation of an infinite space within a limited obser-
vation window is to do the simulation on the finite surface of a torus. This mapping 
deals with boundary-conditions by eliminating them, i.e., a torus has no boundar-
ies. We only need to index neighbors using modular arithmetic (as described on 
page 118):

/* Update old[][] to be the next generation of the Universe. */
static void NextGeneration() {
   /* Determine each state of next[][] as Life(old[][] states). */
      for (int r=0; r<M; r++)
         for (int c=0; c<N; c++) {
            /* Let liveNeighbors be number alive around old[r][c]. */
               int liveNeighbors = 0;
               for (int dr=-1; dr<=+1; dr++)
                  for (int dc=-1; dc<=+1; dc++)
                     if ( (dr!=0||dc!=0) && old[(r+dr)%M][(c+dc)%N] )
                        liveNeighbors++;
            /* Set next[r][c] according to the birth and death rules. */
               if ( old[r][c] ) /* Currently live. */
                  if ( liveNeighbors==2 || liveNeighbors==3 ) 
                     next[r][c]= true;
                  else next[r][c] = false; 
               else /* Currently dead. */
                  if ( liveNeighbors==3 ) next[r][c]=true; 
                  else next[r][c]=false;
            }
   /* Swap old[][] and next[][] Universes. */
      int temp[][] = old; old=next; next=temp;
   } /* NextGeneration */

12

The program now works like a charm, with a minor problem: We are still in outer 
space with no existing life. Specifically, method Initialize is still a stub. 

We now define a bit of life known as a glider:123

/* Establish original configuration in old. */
static void Initialize() {
   /* Glider */
      old[0][1] = old[1][2] = old[2][3] = old[2][1] = old[2][2] = true;
   } /* Initialize */

13

and watch it transform in the output, coasting diagonally down and across the screen 
every fourth generation. (A).

123. We use a slight generalization of assignment statements that permits more than one tar-
get variable to be listed.



218 · Cellular Automata

As a final step, we arrange for the generations to overwrite one another (by putting 
a form-feed character at the beginning of the header), and introduce a timing delay 
of 300 milliseconds to allow each generation to be viewed before it is overwritten: 

/* Display Universe old[][] as an M-by-N grid. */
static void Display() {
   System.out.println( "\u000CGeneration: " + generation );
   for (int r=0; r<M; r++) {
      for (int c=0; c<N; c++)
         if ( old[r][c] ) System.out.print( "X" );
         else System.out.print( "_" );
      System.out.println();
      }
   /* Sleep for 300 milliseconds. */
      try { Thread.sleep(300); } catch (InterruptedException ie) { }
   } /* Display */

14

This step completes the implementation of the Game of Life.
You are now all set to try out different versions of Initialize, perhaps selected from 

the literature.

Generation: 0
_X__________________
__X_________________
XXX_________________
____________________
____________________
____________________
Generation: 1
____________________
X_X_________________
_XX_________________
_X__________________
____________________
____________________
Generation: 2
____________________
__X_________________
X_X_________________
_XX_________________
____________________
____________________
Generation: 3
____________________
_X__________________
__XX________________
_XX_________________
____________________
____________________
Generation: 4
____________________
__X_________________
___X________________
_XXX________________
____________________
____________________
etc.

A



219

ChAPTER 14  
Knight’s Tour

This chapter presents a solution to an ancient puzzle. The development of a pro-
gram that solves the puzzle is traced from start to finish, and illustrates the process 
of a complete coding project. Each step along the way is explained in terms of the 
precept being followed at that juncture. Many precepts will be familiar from earlier 
chapters; others will be new. The essential content of the chapter is the overall pro-
cess of writing a program, from beginning to end, and the rationale for proceeding 
in the order presented.

Background. Chess is played by moving pieces on a board that consists of an 
8-by-8 two-dimensional grid of squares. Pieces can move from square to square in 
only proscribed ways. A Knight is a piece that is permitted to travel two squares in 
one direction (horizontal or vertical), and one square in a perpendicular direction 
(vertical or horizontal) on each move. Thus, as shown in the figure, if a Knight is 
placed in the square signified by ♞, then in one move it can travel to any of the 
squares marked “X”, and to no other square. Note that a Knight that is too close to 
the edge of the board may not be able to move to as many as eight other squares. 
Suppose a Knight is placed on the upper-left square of the board. We may ask: Is it 
possible for the Knight to move successively such that it visits all sixty-four squares 
of the board without ever visiting any square more than once? Such a sequence of 
squares is called a Knight’s Tour.124

Problem Statement. Write a program that attempts to find a Knight’s Tour. The 
output should be an 8-by-8 grid showing the order in which each square is visited, 
or the numeral 0 if the square is unvisited. Thus, for example, the output of a pro-
gram that fails to complete a Knight’s Tour might be as shown in the figure. Ideally, 
the program will find a complete Knight’s Tour, but this is not required. The partial 
tour shown stopped at the square numbered 42 because the Knight got stuck in a 
cul-de-sac, i.e., a square from which there is no way out. Your program should not 
give up unless the Knight gets stuck in a cul-de-sac, but it need not complete a tour. 

Understanding the Problem
The given problem statement is rather complete, but a bit of exploration is still rec-
ommended:

124. Some formulations of the problem require that the Knight return to the original square. 
We shall ignore this constraint.

X X

X X

X X

X X

1 10 23 42 7 4 13 18

24 41 8 3 12 17 6 15

9 2 11 22 5 14 19 32

0 25 40 35 20 31 16 0

0 36 21 0 39 0 33 30

26 0 38 0 34 29 0 0

37 0 0 28 0 0 0 0

0 27 0 0 0 0 0 0



220 · Knight’s Tour

☞ Make sure you understand the problem.

You can read and reread the description, and study the sample tour presented, but it 
is important to test your understanding by working a solution by hand:

☞ Confirm your understanding of a programming problem with concrete 
examples.

There is really nothing special about the fact that the board is 8-by-8, so it occurs to 
us to simplify our task by considering a smaller board, which will have the benefit of 
eliminating the tedious detail of the 8-by-8 case. Considering multiple examples often 
reveals aspects of a problem that might not have been initially apparent. Accordingly, 
we generalize the problem to an n-by-n board, and then gain a better understanding 
by instantiating n with different specific values.

For n=1, the tour is complete from the get-go, so in general, a complete tour is 
possible.

For n=2, no complete tour is possible because the Knight is stuck in the upper 
left square with nowhere to go. From these two examples, we have learned that for 
some n there is a solution, and for others there isn’t. This may be useful to know.

For n=3, we can wander around the perimeter of the board, but can never reach 
the center square, so no complete tour is possible in this case either. In fact, only two 
distinct maximal-length tours are possible because after the first move (for which 
there are two choices, as shown), there is only one unvisited square to which the 
Knight can move at each subsequent step. The example illustrates a second case for 
which no complete tour is possible, but we learn two additional things, as well.

First, sometimes the Knight has choices, e.g., on the first move, and sometimes 
moves are forced, e.g., after the first move, there are no choices.

Second, we notice that the two tours are really one and the same, in the sense that 
they are symmetric images of one another. Specifically, flip the board around the 
major diagonal, and you get the other tour. Leveraging the problem’s symmetries 
may (or may not) prove to be a useful technique as we go forward.

Notice that we have picked up on the style of pictorial images introduced in the 
problem statement, and are using it to advantage. Although we did this instinctively, 
it is worth stating the precept explicitly:

☞ Invent (or learn) diagrammatic ways to express concepts.

For n=4, we encounter the full complexity of the problem. In this case, the Knight 
has numerous choices available to it along the way. Trial and error may be incon-
clusive, and we may give up in frustration before finding a solution. In fact, there is 
none, but this may not be obvious.

It may cross our mind that perhaps only the trivial case of n=1 has a complete 
solution, but we really have no basis for concluding this. We could think deeply at 
this point, following the precept:

☞ Analyze first.

and attempt to derive an algorithm that would be guaranteed to find a complete tour 
whenever one exists. However, the problem statement invites us to output a partial 
(i.e., incomplete) tour, so we opt to proceed without a deeper understanding. There’s 
no point in trying to solve a harder problem than we have been asked to solve.

1 4 7

6 2

3 8 5

1 6 3

4 8

7 2 5

1 4 7

6 2

3 8 5

1 6 3

4 8

7 2 5



Top-level Code Structure  · 221

Top-level Code Structure 
It is our intention to test our code frequently during development. Accordingly, we 
begin with a template for the entire program, which will be needed before the code 
will even compile. This template is sometimes referred to as boilerplate:

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
   /* Output a (possibly partial) Knight’s Tour. */
   static void main() { } /* main */
   } /* KnightsTour */

1

Class and method definitions each have header comments:

☞ A class header-comment is descriptive, and omits the details of the 
methods and variables of the class. Reference available auxiliary doc-
umentation.

A class header will often contain information such as who wrote the class, when it 
was written, revision history, and the like. 

The method header for main states its effect, and nothing else:

☞ A method header-comment specifies the effect of invoking it, and (if 
the method has non-void type) the value returned. If the method has 
parameters, the specification is written in terms of those parameters.

The practice of repeating a class or method name after its definition can be very help-
ful for keeping track of your location in program text, and for keeping braces matched 
and appropriately indented:

☞ Label the end of a long class or method definition with its name in a 
comment.

The program has no input, and it cannot output anything until the Knight has 
either completed a tour, or is stuck in a cul-de-sac. Accordingly, the code can be 
structured as an instance of the initialize-compute-output architectural pattern:

/* Initialize. */
/* Compute. */
/* Output. */

We drop this pattern into the body of method main as scaffolding for the program:

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
   /* Output a (possibly partial) Knight’s Tour. */
   static void main() {
      /* Initialize. */
      /* Compute. */
      /* Output. */
      } /* main */
   } /* KnightsTour */

2



222 · Knight’s Tour

This has largely been busywork, but we might as well get it over with early. More 
importantly, we have established that the top-level structure for the program has 
three major parts, which will inform our subsequent considerations. 

Having advanced the code a bit, it’s time to work on the data representation:

☞ Dovetail thinking about code and data.

lest one consideration get too far ahead of the other.

Data Representation
Data representation is central to a program. “Data” refers not to “input data” but to the 
values in internal program variables that the program manipulates. You may have been 
ruminating on this already, but frontal consideration of the issue is now upon us:

☞ A program’s internal data representation is central to the code; consider 
it early.

The obvious things that must be represented are the board, and the partial tours 
being computed.

Board Representation 1
We begin by choosing an initial representation of the Chess board, keeping in mind 
that it may prove desirable to modify it later. 

A straightforward representation of the board is as a two-dimensional array. In 
deciding on this, we instinctively model a physical object, the 2-D board, with a cor-
responding data structure, a 2-D array. Such parallel structure has appeal, but we 
note that mere resemblance to the physical system being modeled is not a sufficient 
justification for a representation:

☞ The touchstone of a data representation is its utility in performing the 
needed operations.

It remains to seen whether there might be a better alternative.
The default rule for naming variables is:

☞ Aspire to making code self-documenting by choosing descriptive names.

but in this case the board is so central to our program that we are not in danger of 
needing the help of a full name. The seemingly-countervailing rule may be more 
apt:

☞ Use single-letter variable names when it makes code more understand-
able.

Accordingly, we choose the letter B for the two-dimensional array representing the 
board. Even if your personal taste inclines you to spell it out as board, you may wish 
to use B during development, and then rename it later, (say) using a rename feature 
of your program editor.

We hinted at the possibility that we might discover a good reason to change the 



Data Representation · 223

board representation during development of the program. It is important to antici-
pate such changes so that they are not too disruptive, if and when they arise. 

One approach to minimizing future disruptions is:

☞ Minimize use of literal numerals in code; define and use symbolic 
constants.

The use of symbolic constants makes code more understandable because the name 
is mnemonic, whereas a constant is just a bare numeral. But more importantly, the 
use of a symbolic constant reduces the number of places that will need to be changed 
if we wish to alter the value. 

An ultimate goal is one place in the code to change, if need be:

☞ Aim for single-point-of-definition.

Accordingly, we introduce the symbolic constant N for the size of the array, and lo 
and hi for the low and high ranges of its indices. We also introduce BLANK as the 
symbolic name of the value representing a currently-unvisited square, thereby avoid-
ing explicit and cryptic uses of 0 in the code.

The need to change the value of a constant may arise for various reasons. First, 
the problem specification itself might change. For example, we can anticipate that as 
soon as we get the code working for the 8-by-8 case, someone will ask: How about a 
6-by-6 board? How nice it would be to be able to change the definition of N, in one 
place, and have the program immediately work correctly for the revised board size. 

A second and somewhat more subtle reason the value of a constant may change is 
that we may discover, in the course of writing the code, a good reason to pad B with 
extra cells, e.g., we may want to model an 8-by-8 Chess board in a 12-by-12 array, 
allowing for a double-cell border around a central 8-by-8 region.

The definitions of N, lo and hi can be written in various ways. Here are three, in 
order of increasing utility:

• int N=8; int lo=0; int hi=7; This achieves the first-order ben-
efit of replacing these uses of 8, 0, and 7 in the program with names that 
render the code self-documenting. This is a major step toward providing sin-
gle-points-of-definition.

• int N=8; int lo=0; int hi=lo+7; This anticipates that lo may change, 
and if it does, allows the value of hi to be adjusted automatically.

• int N=8; int lo=0; int hi=lo+N-1; This also allows N to change, and 
lets hi take on the correct value automatically.

Clearly, the last choice is best.
Declarations for the variables and constants we have been discussing are writ-

ten at the beginning of class KnightsTour, and are provided with representation 
invariants:

☞ A representation invariant describes the value(s) of one or more pro-
gram variables, and their relationships to one another as the program 
runs. The invariant is typically written as a comment associated with 
the declaration(s) of the relevant variable(s).

Here’s the code:



224 · Knight’s Tour

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
   /* Chess board B is an N-by-N int array, for N==8. Unvisited squares
      are BLANK, and row and column indices range from lo to hi. */
      static final int N = 8;            // Size of B.
      static int B[][] = new int[N][N];  // Chess board, initially 0s.
      static final int BLANK = 0;        // Unvisited square in board.
      static final int lo = 0;           // First row or column index.
      static final int hi = lo+N-1;      // Last row or column index.
      ...
   } /* KnightsTour */

3

Variables N, BLANK, lo, and hi are each given the additional modifier final, which 
states that these variables, as initialized in their declarations, are not permitted to 
change subsequently, i.e., they are truly constant, and are not allowed on the left side 
of assignment statements. It would be okay to omit final, and have the self-disci-
pline to never change the values of these variables, but you should instead:

☞ Leverage features of the programming language and its compiler that 
protect you from mistakes.

Why take on the burden of self-discipline when the compiler can be your enforcer? 
Along those lines, now would be a good time to compile the program, and dis-

cover any typos and syntax errors that may have crept in. Nip problems in the bud:

☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) 
program.

You could even run the program. Of course, it doesn’t do anything interesting, but 
at least you can confirm that it doesn’t crash with a runtime error exception (as it 
would if N were inadvertently defined as a negative number).

Our use of symbolic constants is aimed at keeping code limber, following the 
precept:

☞ Avoid rigid code. Anticipate change. Parameterize.

It is worth mentioning, however, that endless different changes may arise, and it is 
impossible to anticipate them all. The degree of parameterization adopted may be a 
matter of personal taste, or may reflect your circumstances. For example, it would not 
have been difficult to allow for the possibility of boards that aren’t square. We chose 
to not do so, but you might have chosen otherwise. Note that too much parameter-
ization can easily make code more difficult to understand.

We have defined the size, shape, and type of the board representation as the int 
array B, but have not yet said what it contains. 

We turn now to the representation of tours. 

Tour Representation 1
The obvious representation for a (partial) tour corresponds directly to the images 
we have been using, above: Store the visit-sequence number of a square in the cor-
responding element of array B, and store BLANK in the other array elements that 
correspond to squares not currently on the tour. Defining BLANK to be 0 guarantees 
that it cannot be confused with a square that is currently on a tour.



Data Representation · 225

We test the utility of this representation by considering the operations that will 
need to performed on it, and with it. 

Clearly, the Initialize and Output steps will be straightforward: Initialize can store 
a 1 in square B[0][0], and Output can print out array B.

What operations must the Compute step perform, and is the proposed repre-
sentation sufficient and convenient for them? The key operation will be to extend a 
partial tour by one square. This will entail finding a BLANK element in array B that is 
reachable in one legal move from the last square of the present tour, and storing the 
next visit-sequence number there. To do this, we will need to know the location and 
visit-sequence number of that last square, which is the Knight’s present location, as 
it were. How will we know where that is? 

Refer to the example given in the problem statement, and ask: Where is the last 
square of the partial tour shown? It turns out to be in row 0, column 3; the array ele-
ment containing 42. And how did you deduce that? You had to search the entire array 
to find the maximum visit-sequence number. This could be done, so the represen-
tation would be sufficient, but it is certainly not convenient. Surely, we don’t want 
to have to repeatedly search for the Knight’s location in the present tour, especially 
since we just decided to move there in the previous iteration.

The key precept is:

☞ Introduce redundant variables in a representation to simplify code, or 
make it more efficient.

Clearly, we can and should maintain the row and column indices of the Knight’s 
present position in redundant variables. Let’s use r and c for those variables. The 
visit-sequence number of the Knight’s present location is knowable as B[r][c], 
but it will also be useful to introduce another redundant variable, move, for that.

As with the board representation, we declare the variables that represent the pres-
ent tour at the beginning of class KnightsTour, (say) after the variables for the board, 
and provide a representation invariant for them:

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
   /* Chess board B is an N-by-N int array, for N==8. Unvisited squares
      are BLANK, and row and column indices range from lo to hi. */
      ...
   /* A Tour of length move is given by elements of B numbered 1
      to move. Squares numbered consecutively go from ⟨0,0⟩ to
      ⟨r,c⟩, and correspond to legal moves for a Knight. */
      static int move;      // Length of Tour.
      static int r, c;      // Position of Knight.
   ...
   } /* KnightsTour */

4

The diagram in the margin illustrates the representation invariant at a moment when 
the path has reached move 5. The path is shown with a gray background.

 Our goal in the Compute step will be to maintain this representation invariant 
while increasing the length of the tour as much as we can. 

lo c hi
B 0 1 2 3 4 5 6 7 N

lo 0 1 0 0 0 0 4 0 0

1 0 0 0 3 0 0 0 0

r 2 0 2 0 0 5 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

hi 7 0 0 0 0 0 0 0 0
N

BLANK 0 move 5



226 · Knight’s Tour

Alternative Board and Tour Representations
We have readily embraced the “obvious” representations of board and tour (above), 
but a bit a care and reflection are called for before we plow ahead. Might there be an 
alternative representation that is equally good, or perhaps even better?

When we considered the operations that the Compute step must perform, we 
focused on extending a tour one move at a time in the forward direction. Although 
we haven’t yet devised an algorithm, we are aware of a technique known as backtrack-
ing in which, having reached a cul-de-sac, we would wish to retract the last move of 
the tour in order to explore the possible advantages of alternative, earlier moves.

Accordingly, we ask: Does our representation conveniently support backing out 
of the last move? Specifically, we would need to replace the present ⟨r,c⟩ with the 
coordinates of the next-to-last square of the tour. But where is that square? Our rep-
resentation would seem to require that we search among the (up to) eight places from 
which the Knight might have come for the element of B that is numbered move-1. 
Such a search is doable, but is unfortunate.

There is a completely different representation of a tour that would simplify retrac-
tion: We could use lists, as discussed in Chapter 12 Collections. Specifically, instead 
of storing visit-sequence numbers in elements of array B, we could store the coordi-
nates of the consecutive squares of a tour in two 1-dimensional arrays, row and 
column. For example, the tour of length 5 that is shown on the previous page, which 
visits squares ⟨0,0⟩, ⟨2,1⟩, ⟨1,3⟩, ⟨0,5⟩, and ⟨2,4⟩, would be represented as shown.

The coordinates of the Knight’s current position would be given by row[move-1] 
and column[move-1], i.e., 2 and 4. Extending the tour, (say) to square ⟨1,2⟩ would 
be effected by appending 1 and 2, respectively, to the ends of the row and column lists, 
i.e., set row[move] to 1, column[move] to 2, and incrementing move. Retracting 
the last square from the tour would be effected by  decrementing move, with no need 
to search for the next-to-last square. By decrementing move, the Knight effectively 
returns to the previous square of the tour, as if by magic.

The list representation of a tour simplifies retraction, but how well does it 
support extension? Specifically, how will the Compute step locate an unvisited 
square to which the Knight might move? Given that the Knight is currently at 
⟨row[move-1],column[move-1]⟩ it is easy enough to determine coordinates of 
squares reachable in one legal move, but how will we know that such a square is cur-
rently unvisited? If ⟨r,c⟩ are the coordinates of a candidate square, one could search 
the current tour (represented in lists row and column) for the absence of ⟨r,c⟩, in 
which case the square is unvisited:

/* = true if square at ⟨r,c⟩ is not on current tour, and false otherwise. */
static boolean isUnvisited(int r, int c) {
   int k = 0;
   while ( k<move && !(row[k]==r && column[k]==c) ) k++;
   return (k==move);
   }

Notice that the list representation of a tour completely obviates the need for an 
explicit representation of the board, i.e., B is not needed at all, at least not for the 
Compute step. However, recall that we disliked having to locate the next-to-last 
square using a search in B. Surely, having to use a search in lists row and column to 
determine whether a given square ⟨r,c⟩ is unvisited is as bad, or worse. Thus, the list 
representation of a tour, while sufficient, is unsatisfactory by itself. 

0 1 2 3 4 … 64
row 0 2 1 0 2 …

column 0 1 3 5 4 …

m
ov

e



Top-level Procedures · 227

What would be useful would be a redundant representation that would eliminate 
the need for search to determine whether square ⟨r,c⟩ is unvisited. How about a 
2-D boolean array B, where B[r][c] is true if and only if the square with coordi-
nates ⟨r,c⟩ is unvisited? Instead of searching for ⟨r,c⟩ in the lists row and column, 
we would then test B[r][c]. 

Amusingly, we’ve come almost full circle back to our original representation of a 
board. Only now, array B is boolean rather than int, and it serves only as an auxil-
iary data structure in support of the list representation of tours.

So, which representation do we prefer: The 2-D int array B containing visit-se-
quence numbers, or lists row and column containing the coordinates of visited 
squares on the tour? 

Reflecting on the Output step, we realize that to produce a 2-D display requires 
having the visit-sequence numbers in a 2-D int array, anyway. This suggests that we 
might as well use the original representation. If it turns out that our algorithm uses 
backtracking, we can consider introducing lists row and column, not as a complete 
tour representation, but as redundant variables that serve only to facilitate retrac-
tion.

Note that the problem statement might have required that the program’s output 
be presented as the linear sequence of tour squares identified by their coordinates, 
rather than in a 2-D display. Perhaps this would have tipped the balance in favor of 
the list representation of tours. In fact, if the tour were stored only in the 2-D array 
B, it would be a bit of a chore to output it as an itemization of the coordinates of the 
squares visited.

We have illustrated a situation that arises often: Competing representations, each 
with respective advantages and disadvantages. In weighing the tradeoffs between 
them, we have tried to anticipate future needs. But there is a limit to our ability to 
foresee shifting requirements.

☞ Don’t let the “perfect” be the enemy of the “good”. Be prepared to 
compromise because there may be no perfect representation. Don’t 
freeze.

Accordingly, we will choose one representation, and move on. We note, however, a 
looming risk: The code we write is likely to be highly dependent on whichever rep-
resentation we choose. We have advocated techniques, such as the use of symbolic 
constants, to help in keeping code limber. Coding now with respect to a specific data 
representation is an unfortunate step toward code ossification because a later change 
of representation may require major surgery on that code. We note the need for a tech-
nique that would ease this pain, but defer introducing it until Chapter 15 Running 
a Maze.125

Top-level Procedures
With the initial data representation settled (for now), it is time to return to the defi-
nition of main, and elaborate its subtasks. It is not necessary to describe them in 
terms of the program variables because the representation invariant spells that all 
out globally:

125. Exercise 76 asks you to revise the code for KnightsTour using data encapsulation, the 
technique introduced in Chapter 15 for isolating a data representation from the algorithm 
that is its client.



228 · Knight’s Tour

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
      ...
      /* Output a (possibly partial) Knight’s Tour. */
      static void main() {
         /* Initialize: Establish invariant for a tour of length 1. */
         /* Compute: Extend the tour, if possible. */
         /* Output: Print tour as numbered cells in N-by-N grid of 0s. */
         } /* main */
   } /* KnightsTour */

5

Following the precept:

☞ Many short procedures are better than large blocks of code.

we introduce methods Initialize, Solve, and Display for the three subtasks:

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
      ...
      /* Output a (possibly partial) Knight’s Tour. */
      static void main() {
         /* Initialize: Establish invariant for a tour of length 1. */
            Initialize();
         /* Compute: Extend the tour, if possible. */
            Solve();
         /* Output: Print tour as numbered cells in N-by-N grid of 0s. */
            Display();
         } /* main */
   } /* KnightsTour */

6

Method Initialize requires only a few lines because it benefits from built-in 
initialization of array B to 0, the very representation chosen for a BLANK board:

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
   ...
   /* Initialize: Establish invariant for a tour of length 1. */
   static void Initialize() {
      r = lo; c = lo;
      move = 1; B[r][c] = move;
      } /* Initialize */
   ...
   } /* KnightsTour */

7

For now, we only provide an empty stub for Method Solve:

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() { } /* Solve */
   ...
   } /* KnightsTour */

8



Initial Test · 229

This will eventually be the heart of the program, but for now, we follow what we shall 
call the “procrastination rule”:

☞ Defer challenging code for later; do the easy parts first.

One rationale for this rule is that doing easy stuff first often establishes a framework, 
and offers familiarity with the problem space that can help when tackling harder stuff. 
The rule can backfire if you later discover you were thinking about the problem all 
wrong, in which case you may have wasted effort knocking off easy code that turns 
out to be irrelevant. But in this case, it is clear we are moving in a good direction. 
Initially, we only write a stub for method Solve so that the program as a whole is 
complete and testable.

Method Display requires a standard row-major-order enumeration of array indi-
ces, and can be knocked off easily:

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
   ...
   /* Output: Print tour as numbered cells in N-by-N grid of 0s. */
   static void Display() {
      for (int r=lo; r<=hi; r++) {
         for (int c=lo; c<=hi; c++)
            System.out.print(B[r][c] + " ");
         System.out.println();
         }
      } /* Display */
   ...
   } /* KnightsTour */

9

Initial Test
We are in a good position to test our code. Admittedly, a tour that stops when not 
in a cul-de-sac does not satisfy the problem description. But, validating the code 
now is worthwhile, nonetheless. First, accidental typos and bad syntax can be dis-
covered and fixed in this very simple setting. Second, if for some reason the code 
doesn’t manage to print an 8-by-8 display with a 1 in the upper-left square, and the 
rest all 0, we won’t have far to look for the cause. Specifically, various combinations 
of print and println statements incorrectly placed in the for-loops of method 
Output will produce ill-formatted output, e.g., all values on one line, or each value 
on its own line, etc., and we might as well get this right.

We strongly advocate the rule:

☞ Test programs incrementally.

Incremental testing, coupled with procrastination (deferring hard stuff for later), 
supports the general admonition to:

☞ Control complexity.

Knowing that the code in hand works as expected engenders a warm feeling of 
well-being.



230 · Knight’s Tour

Method Solve
All that now remains is to flesh out method Solve. Recall its specification:

/* Compute: Extend the tour, if possible. */

The first step, which is not difficult, is to recognize that an iterative process is 
involved:

☞ If you “smell a loop”, write it down.

We are clearly not going to be able to accomplish what is required in one fell swoop. 
We need iteration, and insert a while-loop template:

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
   ...
  / * Compute: Extend the tour, if possible. */
      static void Solve() {
         _________
         while ( _________ ) _________
         _________
         } /* Solve */
   ...
   } /* KnightsTour */

10

We can paraphrase the pattern of general iterative computation as:

/* Start at “the beginning”. */
   while ( /* not “beyond the end” */ ) {
      /* Process the current “place”. */
      /* Advance to “the next place” (or to “beyond the end”). */
      }

where, in general, the notion of “place” is abstract, and not specifically a “location in 
3-D space”. For example, in an indeterminate-enumeration pattern, “place” is a point 
in the sequence of integers being counted off, and in the online-computation pattern, 

“place” is a point in the input sequence. 
In the present problem, “place” is a square on the chess board, or more precisely, 

a point in the array B that represents the square of the Chess board at the end of a 
partial tour.

In the refinement of the general iterative pattern, we can: 
• Omit where to start, because method Initialize has already placed the 

Knight in the upper-left corner of the board, and has established the represen-
tation invariant.

• Combine “Process” and “Advance” into one “Extend” operation.
• Interpret the condition “not beyond the end” as “not stuck in a cul-de-sac”.

We obtain the code:



Method Solve · 231

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
   ...
  / * Compute: Extend the tour, if possible. */
      static void Solve() {
         while ( /* not in cul-de-sac */ )
            /* Extend the tour 1 square, if possible. */
         } /* Solve */
   ...
   } /* KnightsTour */

11

How should the Extend step be refined? Given that the problem statement does 
not require doing particularly well, a so-called greedy algorithm will suffice: Find any 
legal place to go, and go there. Failure to find a legal place to go means we are in a 
cul-de-sac. This is an opportunity for the search-use pattern:

/* Search. */
/* Use what’s found. */

First search for a place to go, then use that place to extend the tour. The search pat-
tern is instantiated, as follows:

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      while ( /* not in cul-de-sac */ ) {
         /* Extend the tour 1 square, if possible. */
            /* Locate unvisited neighbor, or indicate cul-de-sac. */
            if ( /* not in cul-de-sac */ )
               /* Extend the tour to unvisited neighbor. */
            }
      } /* Solve */
   ...
   } /* KnightsTour */

12

Introduction of the term neighbor is an important aspect of this refinement. By 
neighbor, we mean “square that is reachable from the current position of the Knight 
by a legal move”.

☞ Invent (or learn) vocabulary for concepts that arise in a problem.

Apt terms help conceptualize a problem, and articulate its solution.
Given that we are being greedy, and have no further preference (for now), we can 

seek the first unvisited neighbor we can find in the neighborhood, enumerating pos-
sibilities in an arbitrary order.

The notion of a neighborhood suggests introducing a local frame-of-reference cen-
tered on the Knight’s position, and a one-dimensional coordinate system akin to the 
angle of polar coordinates. The eight neighbors are not spaced uniformly around the 
circle by angle; rather, they are just itemized in (say) counterclockwise order, start-
ing at an arbitrary neighbor.

With this coordinate system in hand, we can think of the search for an unvisited 

2 1

3 0

4 7

5 6



232 · Knight’s Tour

neighbor of the Knight as a search for the index number of the neighbor (0-7), or 
CUL_DE_SAC, which is convenient to represent as 8:

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      while ( /* not in cul-de-sac */ ) {
         /* Extend the tour 1 square, if possible. */
            /* Let k = # of unvisited neighbor, or CUL_DE_SAC. */
            if ( k!=CUL_DE_SAC ) 
               /* Extend the tour to unvisited neighbor. */
            }
      } /* Solve */
   ...
   } /* KnightsTour */

13

We drop the standard sequential-search pattern into the code, omitting for now the 
detail as to how we will test whether a given neighbor is unvisited:

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      while ( /* not in cul-de-sac */ ) {
         /* Extend the tour 1 square, if possible. */
            /* Let k = # of unvisited neighbor, or CUL_DE_SAC. */
               int k = 0;
               while ( k<CUL_DE_SAC && /* neighbor k visited */ ) k++;
            if ( k!=CUL_DE_SAC ) 
               /* Extend the tour to unvisited neighbor. */
            }
      } /* Solve */
   ...
   } /* KnightsTour */

14

With faith that we will find a uniform way to compute the row and column indices 
in array B of neighbor k, we write a template for testing whether that neighbor has 
been visited:

/* neighbor k visited */
   B[___][___]!=BLANK

Notice that coding the test as a single expression is in sharp contrast to a possible 
instinct to perform an eight-way Case Analysis. We drop the expression into the con-
dition of the if-statement:



Method Solve · 233

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      while ( /* not in cul-de-sac */ ) {
         /* Extend the tour 1 square, if possible. */
            /* Let k = # of unvisited neighbor, or CUL_DE_SAC. */
               int k = 0;
               while ( k<CUL_DE_SAC && B[___][___]!=BLANK ) k++;
            if ( k!=CUL_DE_SAC ) 
               /* Extend the tour to unvisited neighbor. */
            }
      } /* Solve */
   ...
   } /* KnightsTour */

15

Then, we turn to the question of how to compute the neighbor's indices.
Coordinates in a neighborhood are what, in physics, is called a local frame of ref-

erence. It is “local” in the sense that it is oriented relative to the current position of 
the Knight. As we have mentioned, it is polar in nature.

We can also place a Cartesian coordinate system, ⟨Δr,Δc⟩, with origin at the 
Knight’s location, and then define the coordinates of the Knight’s eight neighbors 
in that local coordinate system using two arrays of constants:

//                            0   1   2   3   4   5   6   7
static final int deltaR[] = {-1, -2, -2, -1,  1,  2,  2,  1};
static final int deltaC[] = { 2,  1, -1, -2, -2, -1,  1,  2};

If a Knight is located at ⟨r,c⟩ in the global coordinate system, and has a neighbor 
located at ⟨Δr,Δc⟩ in the local coordinate system, then that neighbor is located at 
⟨r+Δr,c+Δc⟩ in the global coordinate system. Accordingly, we can use expressions 
r+deltaR[k] and c+deltaC[k] for the row and column indices of neighbor k.

We are illustrating a very general technique that allows us to avoid Case Analysis 
in code. Specifically, we are following the precept:

☞ Introduce auxiliary data to allow code to be uniform.

Rather than (say) having an eight-way Case Analysis, with one case for each of the 
eight possible neighbors, we have effectively factored out the differences of those 
eight cases into the arrays of data, deltaR and deltaC, thereby allowing our index 
expressions to be uniform.

The same index expressions can be used in both the condition that tests an element 
of B for BLANK, and in the code that extends the tour to incorporate neighbor k:

2 1

3 0

4 7

5 6

Δr

Δc

r

c



234 · Knight’s Tour

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      while ( /* not in cul-de-sac */ ) {
         /* Extend the tour 1 square, if possible. */
            /* Let k = # of unvisited neighbor, or CUL_DE_SAC. */
               int k = 0;
               while ( k<CUL_DE_SAC &&
                       B[r+deltaR[k]][c+deltaC[k]]!=BLANK ) k++;
            if ( k!=CUL_DE_SAC ) 
               /* Extend the tour to unvisited neighbor. */
                  r = r+deltaR[k]; c = c+deltaC[k];
                  move++; B[r][c] = move;
            }
      } /* Solve */
   ...
   } /* KnightsTour */

16

This completes the code for the body of the loop, which can be read as “extend the 
tour, if possible, while maintaining the defined representation invariant for tours”. 
Double checking the code with respect to the invariant is recommended as a guard 
against inadvertent failure to update all of the variables of the representation.

Finally, we turn to termination of the loop, and observe that failure of the search for 
an unvisited neighbor (in the previous iteration) supports the test we need. Variable 
k must be initialized to anything but CUL_DE_SAC to guarantee that the condition 
for iterating is initially true. We hadn't anticipated that we would use k for the loop 
condition, so we must now more its declaration out of the loop body:

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      int k = 0; // Neighbor number not CUL_DE_SAC.
      while ( k!=CUL_DE_SAC ) {
         /* Extend the tour 1 square, if possible. */
            /* Let k = # of unvisited neighbor, or CUL_DE_SAC. */
               k = 0;
               while ( k<CUL_DE_SAC &&
                       B[r+deltaR[k]][c+deltaC[k]]!=BLANK ) k++;
            if ( k!=CUL_DE_SAC ) 
               /* Extend the tour to unvisited neighbor. */
                  r = r+deltaR[k]; c = c+deltaC[k];  
                  move++; B[r][c] = move;
            }
      } /* Solve */
   ...
   } /* KnightsTour */

17

Of course, suitable declarations and initializations of variables deltaR, deltaC, and 
CUL_DE_SAC are required:



Boundary Conditions · 235

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
   ...
   /* Neighbor coordinate system. */
      static final int CUL_DE_SAC = 8;   // Not a neighbor.
      /* Row and column offsets for eight neighbors. */
         //                            0   1   2   3   4   5   6   7
         static final int deltaR[] = {-1, -2, -2, -1,  1,  2,  2,  1};
         static final int deltaC[] = { 2,  1, -1, -2, -2, -1,  1,  2};
   ...
   } /* KnightsTour */

18

This completes the code for method Solve. 
We are well-aware that we cannot successfully execute the program because right 

from the get-go, neighbor 0 of the upper-left square of the board would be off the 
board. If, in our enthusiasm to finish Solve, we were to attempt to run the program 
now, we would be sorely disappointed to receive the “subscript-out-of-bounds” run-
time exception. Ideally, this would jolt us into remembering that we have not yet taken 
boundary conditions into account. If we are mindful, we would not start inspecting 
the code in detail to track down this “bug”, which would be a total waste of time.

Boundary Conditions
As per the relevant precept, we delayed worrying about boundary conditions until 
dead last, but that consideration is finally upon us.

☞ Boundary conditions. Dead last, but don’t forget them.

The rationale for the delay was optimism that once Solve was written, we would 
find a clean way to take care of the boundaries.

One approach would be to insert explicit range checks into Solve. This would 
clutter up the code, and would also take time in the most frequently executed code 
of the program. We prefer to use sentinels, which allow us to leave Solve completely 
unperturbed. We place a ring of sentinels around the board 2-squares wide, where 
their values can be anything other than BLANK. That way, they will never be chosen 
as “unvisited neighbors”. By this device, the code for Solve remains uncluttered, and 
the boundary conditions are completely eliminated!

Returning to the representation invariant of the board, we are able to change just 
a few places, as a consequence of our earlier decision to use defined constants:

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
   /* Chess board B is an N-by-N int sub-array, for N==8, embedded in a
      2-cell ring of sentinel squares. Unvisited squares are BLANK, and
      row and column indices range from lo to hi. */
      static final int N = 8;            // Size of B.
      static int B[][] = new int[N+4][N+4]; // Chess board, initially 0s.
      static final int BLANK = 0;        // Unvisited square in board.
      static final int lo = 2;           // First row or column index.
      static final int hi = lo+N-1;      // Last row or column index.
      ...
   } /* KnightsTour */

19

hi 9

lo 2

lo
2

hi
9



236 · Knight’s Tour

Previously, we were able to begin with an all-zero board, as per the default initializa-
tion of int variables to 0, and our choice of BLANK as 0. But now we must initialize 
the sentinels that will keep the Knight from going off the board.

One approach to doing this would be to view the border as four 2-by-10 slabs, 
arranged as shown. One could then write the code as:

for (int width = 0; width<2; width++)
   for (int length = 0; length<N+2; length++) {
      B[width      ][length     ] = BLANK+1; // Top.
      B[length     ][hi+2-width ] = BLANK+1; // Right.
      B[hi+2-width ][hi+2-length] = BLANK+1; // Bottom.
      B[hi+2-length][width      ] = BLANK+1; // Left.
      }

We prefer the simplicity of initializing the entire board to be the sentinel value 
(BLANK+1), and then overwriting the central N-by-N board with BLANK. The famil-
iarity of row-major-order traversals of rectangular regions reduces the risk of error, 
and the inefficiency of duplicate assignments to the central 8-by-8 square is not 
worth worrying about:

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
   ...
   /* Initialize: Establish invariant for a tour of length 1. */
   static void Initialize() {
      /* Set B to N-by-N board of BLANKs in 2-cell ring of non-BLANK. */
         for (int r=lo-2; r<=hi+2; r++)
            for (int c=lo-2; c<=hi+2; c++)
               B[r][c] = BLANK+1;
         for (int r=lo; r<=hi; r++)
            for (int c=lo; c<=hi; c++)
               B[r][c] = BLANK;
      r = lo; c = lo;
      move = 1; B[r][c] = move;
      } /* Initialize */
   ...
   } /* KnightsTour */

20

This step completes coding of the greedy algorithm for extending the tour. 

Testing, revisited 
With the changes made to address boundary conditions, the program runs without 
error and produces the partial tour that reaches a cul-de-sac at move 42. Since the 
problem statement did not require that our program find a complete tour, we may 
consider the program done. 

We note that the output (A1) is ragged because we neglected to take care that 
each square is printed with a fixed number of characters. This omission was not an 
oversight; rather, it was an application of the precept:

☞ Ignore fussy details for as long as possible.

hi 9

lo 2

lo
2

hi
9

1 10 23 42 7 4 13 18
24 41 8 3 12 17 6 15
9 2 11 22 5 14 19 32
0 25 40 35 20 31 16 0
0 36 21 0 39 0 33 30
26 0 38 0 34 29 0 0
37 0 0 28 0 0 0 0
0 27 0 0 0 0 0 0

A1



Heuristics · 237

It would have been a distraction to have considered output formatting early; we had 
far more important things to think about. Furthermore, it was only in this last test 
that we had output sufficiently general to reveal that we had not taken formatting 
into account correctly. Thus, were we to have addressed formatting earlier, we would 
not have had a convenient test case in hand. We can now easily perfect and test a 
change to method Display:126

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
   ...
   /* Output: Print tour as numbered cells in N-by-N grid of 0s. */
   static void Display() {
      for (int r=lo; r<=hi; r++) {
         for (int c=lo; c<=hi; c++)
            System.out.print( (B[r][c]+"    ").substring(0,3) );
         System.out.println();
         }
      } /* Display */
   ...
   } /* KnightsTour */

21

and confirm that it produces orderly output (A2).

Heuristics
It is pleasant that the greedy algorithm gets as far as it does before boxing itself 
into a cul-de-sac. We note, in passing, that tour length may depend on the order of 
neighbors because we just take the first unvisited neighbor in the list, and go there. 
Conceivably, a different order of neighbors would yield a tour of length 64, or lead 
to a far shorter tour.

We now seek some way to do better. We wish to avoid the vagaries of the arbitrary 
choice of neighbor. We also hope to extend the tour further. 

The code that implemented the greedy algorithm is shown in blue, below:

126. We obtain a String of length 3 that contains the left-adjusted digits of the visit num-
ber by concatenating those digits with blanks on the right, and then truncating that String 
to length 3. The code is incorrect for chess boards larger than 9-by-9, but is easily corrected.

1  10 23 42 7  4  13 18 
24 41 8  3  12 17 6  15 
9  2  11 22 5  14 19 32 
0  25 40 35 20 31 16 0  
0  36 21 0  39 0  33 30 
26 0  38 0  34 29 0  0  
37 0  0  28 0  0  0  0  
0  27 0  0  0  0  0  0  

A2



238 · Knight’s Tour

/* Knight’s Tour: See problem statement in Chapter 14. */
class KnightsTour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      int k = 0; // Neighbor number not CUL_DE_SAC.
      while ( k!=CUL_DE_SAC ) {
         /* Extend the tour 1 square, if possible. */
            /* Let k = # of unvisited neighbor, or CUL_DE_SAC. */
               k = 0;
               while ( k<CUL_DE_SAC &&
                  B[r+deltaR[k]][c+deltaC[k]]!=BLANK ) k++;
            if ( k!=CUL_DE_SAC ) 
               /* Extend the tour to unvisited neighbor. */
                  r = r+deltaR[k]; c = c+deltaC[k];  
                  move++; B[r][c] = move;
            }
      } /* Solve */
   ...
   } /* KnightsTour */

17

Suppose that we have a scoring mechanism to evaluate the desirability of choos-
ing a given unvisited neighbor, and we wish to go to the neighbor with the best score. 
We can change the blue code, as follows:

/* Let k = # of unvisited neighbor, or CUL_DE_SAC. */
   /* Let bestK be favored unvisited neighbor, or CUL_DE_SAC, if all
      neighbors are already visited. */
   k = bestK;

A1

The interface of this code with the rest of the program need not change because we 
are just exchanging the greedy algorithm with one that may do better. The rest of the 
program need not even be aware of the switch.

Without loss of generality, assume the scoring mechanism is provided by an 
int-valued evaluation function, Score, where low scores are considered more desir-
able than high scores. The following code (adapted from p.142) picks a neighbor 
with a minimal score, or sets k to CUL_DE_SAC if there are no unvisited neighbors:

/* Let k = # of unvisited neighbor, or CUL_DE_SAC. */
   /* Let bestK be favored unvisited neighbor, or CUL_DE_SAC, if all
      neighbors are already visited. */
      int bestK = CUL_DE_SAC;  // Neighbor # of favored neighbor.
      int bestScore = Integer.MAX_VALUE;  // Score of neighbor bestK.
      for (k=0; k<8; k++)
         if ( B[r+deltaR[k]][c+deltaC[k]]==BLANK ) {
            int s = Score(r+deltaR[k],c+deltaC[k]);
            if ( s<bestScore ) { bestScore = s; bestK = k; }
            }
   k = bestK;

A2

All that remains to invent is a scoring function.
A heuristic is a rule of thumb that (sometimes) works. There is intuition that 



Heuristics · 239

suggests it has benefits, but no solid argument that it is guaranteed to work. The fol-
lowing heuristic for the Knight’s Tour was given by Warnsdorff in 1823:

Go to an unvisited neighbor that has the fewest unvisited neighbors.

Let’s think about why this rule may be beneficial.
Consider a Knight choosing which neighbor among 0-7 to go to next using 

Warnsdorff ’s Rule. Suppose neighbor 2 is the neighbor amongst 0-7 that has the 
fewest unvisited neighbors. The Knight’s neighbors are depicted in blue, and the 
neighbors of square 2 are depicted in pink. Let square 2 have m unvisited neighbors, 
and consider the cases:

• m=0. Then the Knight’s current square is the only way to get to square 2, and 
if it doesn’t go there now, it will never get another chance. So, it might as well 
go there now. Yes, it will then be in a cul-de-sac, so, if we hope for a tour of 
length 64, this move better be the 64th step. If not, the Knight is effectively cut-
ting its losses, and ending a doomed tour. If the goal were to maximize the tour 
length, it might be better not to go there now, unless this is move 64. Warnsdorff ’s 
Rule is “going for broke”.

• m=1. There is only one way out (shown in yellow). If the Knight goes to 2 now, 
the next move (to yellow) removes 2 from further concern. But if it doesn’t go 
there now, then when it eventually gets to yellow, it will be forced to go to 2, 
which will end the tour in a cul-de-sac. So, best to pass through 2 now, for oth-
erwise it will loom as a hazard.

• m>1. Too hard to think about. Perhaps the above is good enough to complete 
a tour.

Here is method Score for Warnsdorff ’s Rule:

/* Return # of unvisited neighbors of ⟨r,c⟩. (Warnsdorff’s Rule) */
static int Score(int r, int c) {
   int count = 0;   // # unvisited neighbors among 0..k.
   for (int k=0; k<8; k++)
      if ( B[r+deltaR[k]][c+deltaC[k]]==BLANK ) count++;
   return count;
   }

A3

You should not be troubled by the reuse of r, c, and k in method Score; we are fol-
lowing the precept:

☞ Avoid gratuitously different names for parameters and variables whose 
use is essentially the same. Practice conceptual economy.

It is for precisely this reason that the creators of modern programming languages 
invented the notion of scope: So that names could be reused. In support of this pre-
cept, we have been careful to keep the scopes of variables small:

☞ Declare variables with as small a scope as possible.

2 1

3 0

4 7

5 6

2 1

3 0

4 7

5 6



240 · Knight’s Tour

Testing, revisited yet again
Run the program once again, and be pleasantly surprised that the Knight completes 
a Tour of length 64, as shown in the output (B).

Monte Carlo Tours
A Monte Carlo method for a problem uses random trials to search for a solution. Rather 
than our initial greedy approach, or our subsequent heuristic approach, let’s explore 
the effectiveness of a Monte Carlo solution to the Knight’s Tour. At each step we can 
choose an arbitrary unvisited neighbor selected at random. 

The needed machinery is mostly in hand. We only need a random number gen-
erator, which is readily obtained from the Java library:

import java.util.*;
class KnightsTour {
   ...
   static Random rand = new Random();  // Random number generator.
   ...
   } /* KnightsTour */

M1

The top-level program can keep trying random solutions until a Tour of length 64 
has been found:

/* Perform random Knight’s Tours until finding a solution. */
static void MonteCarlo() {
   while (move != 64 ) {
      /* Initialize: Establish invariant for a tour of length 1. */
         Initialize();
      /* Compute: Extend the tour, if possible. */
         RandomSolve();
      }
   /* Output: Print tour as numbered cells in N-by-N grid. */
         Display();
   } /* MonteCarlo */

M2

At each step, RandomSolve merely lists the unvisited neighbors, and selects one at 
random:

1  22 3  18 25 30 13 16 
4  19 24 29 14 17 34 31 
23 2  21 26 35 32 15 12 
20 5  56 49 28 41 36 33 
57 50 27 42 61 54 11 40 
6  43 60 55 48 39 64 37 
51 58 45 8  53 62 47 10 
44 7  52 59 46 9  38 63

B



Monte Carlo Tours · 241

/* Compute: Extend the tour, if possible, making random moves. */
static void RandomSolve() {
   int k = 0;  // Neighbor number.
   while ( k != CUL_DE_SAC ) {
      /* Let unvisited[0:count-1] be neighbor numbers of the count
         unvisited neighbors of ⟨r,c⟩. */
         int unvisited[] = new int[8];
         int count = 0;  // # unvisited neighbors
         for (k=0; k<8; k++)
            if ( B[r+deltaR[k]][c+deltaC[k]]==Blank ) {
               unvisited[count]=k; count++;
               }
      if ( count==0 ) k = CUL_DE_SAC;
      else {
         k = unvisited[rand.nextInt(count)];
         /* Extend the tour to neighbor k. */
            move++; r = r+deltaR[k]; c = c+deltaC[k];  B[r][c]=move; 
         }
      }
   } /* RandomSolve */

M3

The calculation “rand.nextInt(count)” provides a random integer in the range      
0 through count-1. 

If, instead of printing the solution, we wish to study the behavior of the Monte 
Carlo search, we can collect data in a histogram:

/* Perform random Knight’s Tours until finding a solution. */
static void MonteCarlo() {
   int freq[] = new int[N*N+1]; // Histogram of Tour lengths.
   while (move != 64 ) {
      /* Initialize: Establish invariant for a tour of length 1. */
         Initialize();
      /* Compute: Extend the tour, if possible. */
         RandomSolve();
      /* Bin the path length. */
         freq[move]++;
      }
   /* Output the histogram freq[1:64]. */
      for (int j=1; j<=64; j++ ) System.out.println( j+" "+freq[j] );
   } /* MonteCarlo */

M4

The code assumes that an tour of length 64 would eventually be found, and fortu-
nately that is the case. Dropping the output into a plotting program shows the 
distribution of the random tour lengths found:



242 · Knight’s Tour

Interestingly, with a little ingenuity it is possible to work oneself into a cul-de-sac in 
eight moves. Who would have guessed that a Knight could be so stupid? 

Reflections
Basking in our success, it is worthwhile to review the code, and observe that it pri-
marily consists of apt uses of familiar patterns:

Method Solve
• The greedy algorithm to find an unvisited square is a straightforward Sequential 

Search (p. 129).
• The heuristic algorithm is a standard search for best (p. 142). 
• The method’s outer loop is a simple indeterminate iteration until stuck, using 

the representation invariant of maze and path as the loop invariant.

Method Score
• The scoring function for Warnsdorff ’s Rule just counts unvisited neighbors of 

a given square.

Methods Initialize and Display
• Straightforward 2-D determinate enumerations in row-major order.

Method RandomSolve
• A small revision of Solve that builds a list of unvisited neighbors, as per 

Chapter 12, and then selects one at random.
Method MonteCarlo 
• A standard Sequential Search for a successful solution.
• Use of an array to compute a histogram, as per Chapter 12 (p. 205).

Complete Program
Because the full program is long, and the presentation has been fragmented, it is 
reprinted all together in Appendix IV.



243

ChAPTER 15  
Running a Maze

This chapter presents a complete solution to the maze-running problem. We have 
seen the problem twice before: In Chapter 1, to illustrate use of Precepts and Patterns, 
and in Chapter 4, to illustrate careful reasoning about correctness and termination 
using loop invariants and loop variants. In an effort to make this chapter somewhat 
self-contained, we largely repeat the material from Chapter 1, with apologies, and 
incorporate the material of Chapter 4, by reference, at the appropriate point in the 
development.127

The maze-running problem has sufficient complexity to motivate introduction of 
techniques that support the programming of nontrivial applications. First, how to par-
tition code into multiple modules. Second, how to use encapsulation and information 
hiding to segregate concerns and keep code limber. Third, incremental development 
and incremental testing as a way to control the process.

Background. We define a maze to be a square two-dimensional grid of cells 
separated (or not) from adjacent cells by walls. One can move between adjacent cells 
if and only if no wall divides them. A solid wall surrounds the entire grid of cells, so 
there is no escape from the maze.

If we drop a rat into the upper-left cell, it may eventually locate a wedge of cheese 
placed in the lower-right cell. Although a rat’s initial path to the cheese will perforce 
be indirect and inefficient, after repeated trials it may make a beeline to the cheese, 
as shown in the figure.

Problem Statement. Write a program that inputs a maze, and outputs a direct 
path from the upper-left cell to the lower-right cell if such a path exists, or outputs 

“Unreachable” otherwise. A path is direct if it never visits any cell more than once. The 
output should show the direct path as a sequence of numbered cells, as illustrated. 
You must design the format in which input data defines a maze. Your program should 
check that the input data correspond to a well-formed maze, and output “Malformed 
input” if it does not. You must design the output format in which the program dis-
plays the direct path if one exists, but it need not have fancy graphics.

Top-level Code Structure
Given the blank sheet of paper before you, where do you begin?

127. The problem is used in yet two more places: In Chapter 17 Graphs and Depth-First 
Search, and in Chapter 19 Debugging.

1 2 3
5 4
6 7

8
9 10 11



244 · Running a Maze

☞ Start by writing a top-level decomposition of the solution.

A cursory reading of the problem statement suggests the top-level architecture of the 
program, an application of the offline-computation pattern. We can use that pattern 
for the initial structure of the program in method main128 of class RunMaze:129

/* Rat running. See Chapter 15 of text. */
class RunMaze {
   /* Run maze. */
   public static void main() {
      /* Input. */
      /* Compute. */
      /* Output. */
      } /* main */
   } /* RunMaze */

R1

This is a start, but omits details that are readily apparent in the problem statement. 
A more complete reading of the problem statement leads to the following, more 
detailed articulation of the top-level structure of a solution:

/* Rat running. See Chapter 15 of text. */
class RunMaze {
   /* Run a maze given as input, if possible. */
   public static void main() {
      /* Input a maze of arbitrary size, or output “malformed input”
         and stop if the input is improper. Input format: TBD.*/
      /* Compute a direct path through the maze, if one exists. */
      /* Output the direct path found, or “unreachable” if there is
         none. Output format: TBD. */
      } /* main */
   } /* RunMaze */

R2

This adds the fact that the maze is given as input, adds the error condition that the 
input may not be well-formed, clarifies the required nature of a solution, and adds 
the boundary condition that no direct path may exist. 

You may feel that even this more detailed top-level structure is far too obvious 
to be worth writing down explicitly, but consider the benefits. The decomposition 
helps to structure your thinking, and writing it down makes explicit what you may 
only sense implicitly. The written outline provides an initial program skeleton that 
serves as a map to help guide your subsequent work. Writing down the structure 
begins the introduction of vocabulary useful for expressing your thoughts, approaches, 
and possible solution.

A certain problem decomposition is one that is unlikely to be wrong and in need 
of rework. We follow the Hippocratic Oath to “Do no harm”, which in this context 
means “Avoid going down a garden path in a wrong direction”.

128. This is the first time we have used the modifier public, which indicates that a name is 
visible outside the class, and is therefore is available to its client, i.e., the user. The modifier is 
not necessary because public is the default visibility. However, we use it here explicitly, in 
contradistinction to the modifier private, which we will soon introduce.
129. In this chapter, we develop two classes, RunMaze and MRP. The developments of each 
class are numbered starting at 1, and bear prefixes R and M, respectively.



Top-level Code Structure · 245

☞ Code with deliberation. Be mindful.

If a decomposition is sure to be part of the eventual solution, then you have nothing 
to lose and much to gain by writing it down early.

The initial tripartite decomposition into three steps is safe; it is hard to imagine 
that it could be wrong. One small design decision warrants reflection. Specifically, 
the responsibility to emit the message “Unreachable”, when appropriate, has been 
delegated to Output. You may ask: Won’t Compute perforce discover that there is 
no direct path to the cheese, and given that, would it not be more convenient to have 
it emit the “Unreachable” message when it makes that discovery?

Here’s an analysis. Yes, Compute is sure to discover unreachability, for otherwise 
it will be at risk of running forever. But while it might be convenient to emit the 

“Unreachable” message there, doing so does not free us from having to convey the 
information to Output so that it can omit the display of a path. Given this, we might 
as well consolidate all output within Output. Thus, our design decision, while not 
forced, is worthwhile nonetheless, and very likely “does no harm”.130

We follow the precept that:

☞ Many short procedures are better than large blocks of code.

and lay in this framework at the start by invoking a method for each of the three 
parts:

/* Rat running. See Chapter 15 of text. */
class RunMaze {
   /* Run a maze given as input, if possible. */
   public static void main() {
      /* Input a maze of arbitrary size, or output “malformed input”
         and stop if the input is improper. Input format: TBD.*/
         Input();
      /* Compute a direct path through the maze, if one exists. */
         Solve();
      /* Output the direct path found, or “unreachable” if there is
         none. Output format: TBD. */
         Display();
      } /* main */
   } /* RunMaze */

R3

As long as we are building a scaffolding for our program, we might as well follow 
the precept

☞ Don’t type if you can avoid it; clone. Cut and paste, then adapt.

and provide shells for the three methods, together with their header comments:

130. One could argue that upon discovering unreachability Compute could abort program 
execution rather continuing on, which point is taken. However, as a general rule, we prefer to 
retain the discipline that every code fragment has a single point of entry and single point of 
exit, which discipline promotes compositionality, i.e., the property that every fragment of code, 
and every placeholder for code, presents the same interface, and are therefore “plug compati-
ble”, at least from the point of view of the flow of control through code.



246 · Running a Maze

/* Rat running. See Chapter 15 of text. */
class RunMaze {
   /* Input a maze of arbitrary size, or output “malformed input”
      and stop if the input is improper. Input format: TBD. */
   private static void Input() { } /* Input */
   /* Compute a direct path through the maze, if one exists. */
   private static void Solve() { } /* Solve */
   /* Output the direct path found, or “unreachable” if there is none.
      Output format: TBD. */
   private static void Output() { } /* Output */
   ...
   } /* RunMaze */

R4

Although it looks like a lot of new text, almost none of it is because most came for 
free via a single cut-and-paste operation.

Introduction of the modifier private for the three methods, in contrast with the 
public modifier of main, begins articulation of the interface between this class and 
its client, the user: The three methods are internal implementation concerns for class 
RunMaze about which others have no need to know. Thus, we hide them from view. 
The user will know about main, and nothing else. It is useful from the get-go to:

☞ Practice information hiding.

The three methods are said to be encapsulated within RunMaze.
It might be said that we have only been engaged in busywork that almost offends 

our sense of intelligence. This looks like a fun problem, and we are eager to get on 
with thinking about the challenging parts. The temptation to start working on those 
aspects is magnetic, and clambers for our attention. But we have been proceeding 
in a purist, top-down fashion, and have been deferring bottom-up considerations. 
Admittedly, these may influence our direction, but they will come soon enough. The 
kind of drivel we have been writing will have to be there eventually, and so, we might 
as well get it over with now. The precept:

☞ Ignore fussy details for as long as possible.

argues for focus on substantial matters, and for delay of distracting busywork. The 
counterargument is that early attention to architectural matters is worthwhile, espe-
cially while we are getting acclimatized to the problem.

Algorithm
How can a rat systematically explore a maze? For that matter, what would you do? 
To make progress on this question, we turn to the physical system being modeled, 
and follow the rule:

☞ Seek algorithmic inspiration from experience. Hand-simulate an algo-
rithm that is in your “wetware”. Be introspective. Ask yourself: What am 
I doing?

“Hand-simulate” what, you may ask? Hand-simulate the unspoken program that you 
must have in your head if you can systematically solve the problem yourself.

Imagine that you are in the upper-left cell of the maze (say) facing up. You put your 
left hand on the wall in front of you, and trace it all the way around as you move to 
the right from cell to cell. You discover that you will eventually reach the lower-right 
cell if there is a path to it. If you can do it, the rat can do it.



Algorithm · 247

Replaying this example systematically, we draw a series of diagrams in which your 
left arm (or the rat’s paw) is symbolized by an arrow. The run begins like this:

↑ ↑ ↑ → ← ↑

From these diagrams, which are effectively a trace of the algorithm that you are fol-
lowing, we can read off the sequence of operations that you performed:

• Sidestep to the right.
• Sidestep to the right.
• Turn the concave corner 90 degrees clockwise.
• Pirouette into the cell on the opposite side of the wall, making a 180-degree 

hairpin turn counterclockwise.
• Turn the concave corner 90 degrees clockwise.

The trace then continues:

↑ →
→ ↓ ← →

as you perform these next operations:
• Sidestep to the right.
• Turn the concave corner 90 degrees clockwise.
• Sidestep to the right.
• Turn the concave corner 90 degrees clockwise.
• Turn the concave corner 90 degrees clockwise.
• Pirouette counterclockwise into the cell on the opposite side of the wall, mak-

ing a 180-degree hairpin turn counterclockwise.
Three possible operations have emerged that are candidates for implementation: 
Sidestep right, turn clockwise, and pirouette counterclockwise. Further inspection 
of the example reveals the need for a fourth operation that arises in the very next 
step: Turn the convex corner 90 degrees counterclockwise.

The important point being illustrated is that when you can perform an algorithm 
(the code for which is in your head) you can often observe a trace of what you are 
doing, and discover a first approximation to the operations that need to be per-
formed.

In the section Extended Example: Running a Maze of Chapter 4, we analyzed the 
very four operations we just elicited, and observed that they can be advantageously 
replaced by three alternative fine-grained actions: 

• Turn the rat (in place) 90 degrees clockwise.
• Turn the rat (in place) 90 degrees counterclockwise.
• Advance the rat one cell forward, i.e., in the direction faced.

To these, we added three fine-grained queries:
• Is the rat facing a wall?
• Is the rat at the cheese?
• Is the rat about to repeat itself?



248 · Running a Maze

Replaying the algorithm on the example, we obtain the following trace, now expressed 
in the vocabulary of the smaller steps:

↑ → ↑ → ↑ →

↓
→ ↑

← ↑ →

↑ → ↓
→ ↓ ←

↑
← ↓

→ ↓
→

Although it is tempting to call the maze-exploration algorithm derived in Chapter 4   
“pseudo-code”, there is no reason why it cannot be real code: We express the pseu-
do-operations as method calls, place the initialization in Input, and place the 
iteration in Solve:

/* Rat running. See Chapter 15 of text. */
class RunMaze {
   /* Input a maze of arbitrary size, or output “malformed input”
      and stop if the input is improper. Input format: TBD. */
   private static void Input() {
      ⟨Obtain maze from input.⟩
      ⟨Establish initial state: In upper-left cell, facing up.⟩
      } /* Input */
   /* Compute a direct path through the maze, if one exists. */
   private static void Solve() {
      while ( !isAtCheese() && !isAboutToRepeat() )
         if (isFacingWall()) TurnClockwise();
         else {
            StepForward();
            TurnCounterClockwise();
            }
      } /* Solve */
   ...
   } /* RunMaze */

R5

By hand simulating the code, we confirm that it generates the trace depicted above.
Taking stock, we realize that the code in hand performs a systematic exploration,  

but does not yet address the question of recording a path. Working through the 



Data Representation · 249

example has clarified that converting an exhaustive exploration to a direct path will 
require some form of surgery on the exploration path. However, we don’t engage in 
that now because it is past time to consider the design of the data representation:

☞ Dovetail thinking about code and data.

Data Representation
The simple act of writing down the tripartite, top-level decomposition of the pro-
gram brings into focus a key question: How will method Input convey the maze 
to method Solve, and how will method Solve convey the direct path it finds to 
method Output?

These matters of internal representation are critical:

☞ A program’s internal data representation is central to the code; consider 
it early.

Choosing a good internal representation can greatly simplify writing the code  for the 
computation-intensive part of a program. Conversely, choosing a bad internal repre-
sentation can make the program so complicated that down the road you are forced to 
discard your unfinished code, redesign the representation, and start all over again. 

We need to represent three things: 
• The maze with its collection of walls.
• The position and orientation of the rat. 
• The path taken by the rat (so far) during its exploration. 

The maze will be given as input, but once read in, will not change. In contrast, the 
path will be developed one step at a time. We will need a collection of variables that 
together represent the state of the aggregate maze-rat-path system as it evolves over the 
course of program execution. Such a collection of variables is called a data structure.

Designing an efficient data structure for representing the key elements of our prob-
lem is a critical aspect of the program that we will consider in detail soon enough. 
But, efficient for what? As we have stated before:

☞ The touchstone of a data representation is its utility in performing the 
needed operations.

Reflecting back on the Knight’s Tour in Chapter 14, you would be hard pressed to 
single out the operations supported by the board-knight-tour system because they 
were interleaved in the code that implements the Knight’s strategy. That code accesses 
the elements of the data structure directly; its fine-grained steps are not segregated 
from the Knight’s Tour algorithm; the operations are not named.

In contrast, the maze-running algorithm is already expressed in a vocabulary that 
suggests a set of operations. Rather than accessing the maze-rat-path data structure 
directly, the code for the maze-running algorithm invokes named methods. In effect, 
we have factored the program by moving the code for each operation into the defi-
nition of a separate method, and we have replaced that code in the algorithm by an 
invocation of the corresponding method.

Competing designs for a data structure must be assessed in the context of the 
primitive computational steps that must be supported. In designing the algorithm, 
we first asked what we wanted from the representation without worrying about how 



250 · Running a Maze

the representation would support a reply. It is now time to design the underlying data 
structure that can be used to implement the operations efficiently. If this proves to be 
difficult, we may have to consider revising the set of operations originally proposed.

In addition to factoring the operations into methods, we take the additional step 
of factoring the method definitions into a separate class. The overall program will 
consist of  two distinct modules: The algorithm (in class RunMaze) and the data rep-
resentation (in class MRP, which we now introduce):

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   } /* MRP */

M1

The service rendered to the algorithm by class MRP will consist entirely of the public 
features it makes available. We say that the class publishes or exports its public fea-
tures, and that those features are made visible to clients. The visible features are known 
as the class’s interface.131

We could allow the underlying data structure to be a visible feature of MRP, but it is 
our intention to hide it, i.e., to make it private and not part of the interface. We will 
require that the public methods of MRP constitute a sufficient vocabulary in which 
to express the maze-running algorithm. Whatever data structure we devise to repre-
sent maze, rat, and path will be in support of implementing these public methods, 
and nothing more. This technique, which is called data encapsulation, is designed to 
allow the representation to be changed later without affecting the client algorithm. 

Recall that at the level of individual statement-level specifications and their refine-
ments, we had to exercise self-discipline to prevent the rest of the program from 
relying on the details of the specification’s implementation. In contrast, at the level 
of a class, and the implementation of methods, there is linguistic support: The com-
piler enforces information hiding by only allowing access to the public features 
of a class. The class is said to be abstract if its interface consists only of methods, 
and not its data structure.

We create a stub for each of the six methods used by the algorithm, speci-
fying the return type boolean for queries, and return type void for actions:

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   public static void TurnClockwise() { }
   public static void TurnCounterClockwise() { }
   public static void StepForward() { }
   public static boolean isFacingWall() { return ____; }
   public static boolean isAtCheese() { return ____; }
   public static boolean isAboutToRepeat() { return ____; }
   } /* MRP */

M2

Additional operations may be needed later, but for now we focus only on these six. 
We are ready to consider the design of the data structure that will support their 
implementations.

Recall that we need to represent three things: The maze with its collection of 
walls, the position and orientation of the rat, and the path taken by the rat during its 

131. We use the term “interface” generically, and do not refer to the Java construct interface. 
Similarly, we will use the term “abstract” generically, and not as Java’s abstract class.

Program

/* Specification. */

Implementation

Program

Class
/* Method Specifications. */

Method Implementations

CLIENT
algorithm

SERVER
maze

rat
path

queries actions



Data Representation · 251

exploration so far. Together, these representations must support implementation of 
the abstract queries and actions used to express the exploration:

Maze Representation 1
A straightforward representation of an N-by-N maze is as an N-by-N integer array, say, W, 
where element W[r][c] represents the walls immediately surrounding cell ⟨r,c⟩. 

In general, for each cell ⟨r,c⟩ there are 24=16 possible combinations of four walls 
and non-walls surrounding that cell. Accordingly, W[r][c] can encode the configu-
ration of walls at cell ⟨r,c⟩ using the following numbering scheme:

13 140 1 2 3 4 115 6 7 8 9 10 12 15

One may interpret a number (0-15) as a 4-bit binary numeral ⟨b3b2b1b0⟩, where the four 
bits represent the absence or presence of a wall in the direction ⟨up,right,down,left⟩, 
respectively. Thus, for example, configuration 6 can be interpreted as:

610= 410+ 210= 0·23+ 1·22 + 1·21+ 0·20 = 01102 = ⟨NoWall,Wall,Wall,NoWall⟩.

An important advantage of this representation is the simplicity of the correspon-
dence between the coordinates of cells in the N-by-N maze, and the indices of 
elements in the N-by-N array W. As a consequence of this correspondence, we are not 
likely to struggle with brittle indexing arithmetic in the code that explores the maze. 
In particular, when the rat is in cell ⟨r,c⟩, we will readily be able to consult W[r][c] 
to ascertain what walls exist for that cell.

What, if any, are the implications, limitations, or possible drawbacks of this rep-
resentation? 

First, we can anticipate the need to decode the representation of a cell’s walls, i.e., 
for a cell whose encoding of walls is w, we will need to determine whether there is 
a wall on side d of the cell. It was for this reason that we chose a systematic rather 
than a chaotic encoding of walls. In our encoding, if we number the wall positions 
⟨up,right,down,left⟩ as ⟨3,2,1,0⟩, respectively, we can tell whether or not a wall is 
present on side d by inspecting bit bd in the cell’s binary wall encoding w=⟨b3b2b1b0⟩. 
Mindful of the rule:

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid 
code bloat.

we may plan to bury the bit-twiddling decoding operation in a Boolean function 
isWall(r,c,d) that returns true if and only if maze cell ⟨r,c⟩ has a wall on side d. 
This approach seems feasible. 

It is somewhat concerning that Maze Representation 1 violates a standard rule:

☞ Choose representations that by design do not have nonsensical con-
figurations.

Our representation W of maze walls allows inconsistencies, i.e., one cell can claim 
there is a wall between it and a neighbor, while the neighbor can claim there is no 
such wall. For example, the upper-left cell of the maze shown to the right is encoded 
as 9, i.e., no wall to the right, whereas the walls of the cell to its right are encoded as 

W 0 1 2 3 4
0 9 10 12 9 12
1 5 9 2 4 7
2 5 1 12 3 12
3 5 7 5 11 6
4 3 14 3 10 14

W 0 1 2 3 4
0 9 11 12 9 12
1 5 9 2 4 7
2 5 1 12 3 12
3 5 7 5 11 6
4 3 14 3 10 14



252 · Running a Maze

11, i.e., a wall to the left. The input routine will be able to make sure that such incon-
sistencies never arise, but the possibility of such meaningless configurations suggests 
that there may be a more efficient representation where they don’t arise because 
walls are uniquely represented.

We note, however, that there is a countervailing precept to the one above that 
results in exactly the sort of “nonsensical” representations the previous precept 
seeks to avoid:

☞ Introduce redundant variables in a representation to simplify code, or 
make it more efficient.

so, tradeoffs are necessarily involved. For example, in the Knight’s Tour problem, we 
considered various representations of tours, and considered mutually-supportive 
redundant representations that support the full complement of operations needed 
(p. 224). The introduction of redundancy necessarily creates the risk of inconsis-
tency, but in support of a worthy cause.

Path Representation 1
A direct path from the upper-left cell can be represented by integers 1, 2, 3, etc. in 
the elements of an N-by-N integer array, say, P, where P[r][c] represents the 
sequence number along the path to cell ⟨r,c⟩. If cell ⟨r,c⟩ is not along the path, then 
element P[r][c] can contain some value, say, 0, that is distinct from any legitimate 
path sequence number. We shall use the symbolic constant Unvisited to denote 
that value, where the name is not meant to connote that the cell has never been vis-
ited, only that it is not visited along the current path. 

Maze Representation 2
A drawback of Maze Representation 1 was that each wall was represented in two dif-
ferent places in the data structure, and this could lead to inconsistencies. Although 
we observed that inconsistencies are an inevitable consequence of redundant repre-
sentations, there is no point in allowing gratuitous inconsistencies. Accordingly, we 
may reach for a different representation of a maze without that downside.

We observe that for an N-by-N maze, vertical walls can be represented by an 
N-by-(N+1) boolean array V, and horizontal walls can be represented by an (N+1)-
by-N boolean array H. In the figures in the margin, we show true in blue. Were we 
to adopt this representation, the boolean function isWall(r,c,d) suggested 
above could consult V[r][c] or V[r,c+1] for the presence of a wall if direction d 
is left or right, and could consult H[r][c] or H[r+1][c] for the presence of a wall 
if direction d is up or down.

By representing each possible wall uniquely, we eliminate the possible inconsis-
tencies of Maze Representation 1, albeit at the expense of violating a different rule:

☞ Choose data representations that are uniform, if possible.

Representing vertical and horizontal walls in distinct arrays is disconcerting, although 
as with Maze Representation 1, such details can be encapsulated in a function such 
as isWall. But the aesthetic negatives of Maze Representation 2 suggest that we 
continue to explore the design space of alternative wall representations.

P 0 1 2 3 4
0 1 2 3 0 0
1 0 5 4 0 0
2 0 6 7 0 0
3 0 0 8 0 0
4 0 0 9 10 11

V 0 1 2 3 4 5
0

1

2

3

4

H 0 1 2 3 4
0

1

2

3

4

5



Data Representation · 253

Maze Representation 3
We observe that we can represent the walls of an N-by-N maze, as well as a direct 
path through it, in a single (2·N+1)-by-(2·N+1) array M. We illustrate the possibility 
with a sample 2-by-2 maze in which the four cells are labeled A, B, C, and D. Elements 
of M with gray background correspond to positions of possible walls, where the asso-
ciation of a cell and its four possible walls is implicit in array indices, i.e., the presence 
or absence of a wall in the ⟨up,right,down,left⟩ direction for the maze cell represented 
by array element M[r][c] is given by a value (say, Wall or NoWall) in ⟨M[r-1][c], 
M[r][c+1], M[r+1][c], M[r][c-1]⟩, respectively. Elements of M with yellow 
background are unused. The elements of M labeled A, B, C, and D are used for stor-
ing sequence numbers along a direct path through that cell, or Unvisited.

The positives for this representation include these:
• Maze Representation 3 accommodates a representation of walls and paths in 

one and the same array M, which may be preferred to the separate arrays for 
walls and paths of Maze Representations 1 and 2.

• Maze Representation 3 characterizes each wall position by a unique element 
of M whose simple binary encoding (Wall, NoWall) describes the presence 
or absence of a wall there. It thus eliminates Maze Representation 1’s need 
to decode an integer encoding of walls, and also eliminates the possibility of 
ambiguous configurations. 

• We have replaced Maze Representation 2’s dual array representation of vertical 
and horizontal walls by a uniform indexing mechanism within a single array 
for accessing information about a cell’s possible walls.

The negatives of Maze Representation 3 are these:
• We have lost the simple correspondence between the coordinates of cells in 

the physical maze, and the coordinates of elements in its representation. In 
particular, in Maze Representation 3, the physical cell with coordinates ⟨r,c⟩ 
corresponds to array element M[2*r+1][2*c+1]. Similarly, when the rat 
advances to a neighboring cell, the row or column index in M must change by 
±2, and not ±1.

• Roughly one quarter of the space in M is wasted, but alas this is the cost of a 
simplified indexing scheme that uniquely, and therefore unambiguously, relates 
cells and their walls.

Note that in evaluating the alternatives above, we considered only internal, and 
not external, data representations. That is, we did not concern ourselves with how 
a maze is to be represented in input, and how it will be displayed in output, along 
with a direct path. It could well turn out that one representation is easier than the 
others to translate from input or to output, but this should not be determinative at 
this juncture. We follow the rule:

☞ Design internal data representations based on internal computational 
needs, ignoring input and output format considerations.

and are prepared to let the chips fall where they may regarding input and output.
We embrace Maze Representation 3 for our solution, recognizing that its alterna-

tives also have their merits; the choice is, to some extent, a matter of taste. 
It is always a good idea to review the representation design, and to firm up its 

description in a representation invariant, i.e., a statement of relationships among a 
collection of variables. The representation invariant is a statement of properties that 

M 0 1 2 3 4

0

1 A B
2

3 C D
4

A B

C D



254 · Running a Maze

will hold if the representation constitutes a well-formed description of what is being 
modeled, i.e., the maze and its walls.

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   /* Maze. Cells of an N-by-N maze are represented by elements of
      array M[2*N+1][2*N+1]. Maze cell ⟨r,c⟩ is represented by array
      element M[2*r+1][2*c+1]. The possible walls ⟨top, right, bottom,
      left⟩ of the maze cell corresponding to ⟨r,c⟩ are represented by
      Wall or NoWall in ⟨M[r-1][c], M[r][c+1], M[r+1][c], M[r][c-1]⟩.
      The remaining elements of M are unused. lo is 1, and hi is
      2*N-1. */
      private static int N;      // Size of maze. */
      private static int M[][];  // Maze, walls, and path.
      private static final int Wall = -1;
      private static final int NoWall = 0;
      private static int lo, hi; // Left/top and right/bottom maze indices.
   ...
   } /* MRP */

M3

We work hard to perfect the statement of a representation invariant. The more pre-
cise it is, the easier it will be to write code later because you will be able to consult 
the invariant for guidance.

Following the rule:

☞ Minimize use of literal numerals in code; define and use symbolic 
constants.

we state the invariant using constants (Wall, NoWall) to provide greater readability, 
and to allow for easier changes later should the need arise. We have also introduced 
variables (lo and hi) for the indices in M of the left/top and right/bottom sides; 
these are variables rather than constants because the size of M will not be known 
until the input has been read.

Rat Representation
Given the representation of the maze that we have chosen, representation of the 
rat’s location is straightforward; we have only to keep track of its row and column 
coordinates in array M. The orientation of the rat is easily represented by an integer 
from 0 to 3 representing (say) up, right, down, and left, respectively. Thus, the rat’s 
representation invariant is:

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   /* Rat. The rat is located in cell M[r][c] facing direction d, where
      d=⟨0,1,2,3⟩ represents the orientation ⟨up,right,down,left⟩,
      respectively. */ 
      private static int r, c, d;
   ...
   } /* MRP */

M4

Note that the coordinate system for the rat’s location is chosen as row and column 



Data Representation · 255

indices in the data structure M rather than in the two-dimensional physical maze 
itself. Thus, when the rat is in the lower-right cell of an N-by-N maze, the location 
⟨r,c⟩ will be ⟨2*N-1,2*N-1⟩, and is not ⟨N-1,N-1⟩.

Path Representation 2
Given that we have adopted Maze Representation 3, there is no need for a separate 
array for paths, as in Path Representation 1. There is room for the path in array M. 
Thus, the representation invariant for a path is:

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   /* Path. When the rat has traveled to cell ⟨r,c⟩ via a given path
      through cells of the maze, the elements of M that correspond to
      those cells will be 1, 2, 3, etc., and all other elements of M
      that correspond to cells of the maze will be Unvisited. The
      number of the last step in the path is move. */
      private static final int Unvisited = 0;
      private static int move;
   ...
   } /* MRP */

M5

We have taken a holistic approach to designing the internal data representation of 
maze, path, and rat. We strived for a harmonious design that enables different aspects 
to leverage one another, and have come up with an integrated representation of the 
path with the maze that we find pleasing.

Although our representation is economical, a tight coupling can be a mixed bless-
ing because too much cohesion can also be a disadvantage. One of the so-called 

“ilities” of programming is “modifiability”. Packing separate concerns into one data 
structure can result in a “house of cards”, where a small perturbation in one part of 
the program risks causing the entire edifice to collapse. If you were to approach the 
choice of data representation with future modifiability in mind from the get-go, you 
might eschew packing walls and path into the same array, and make a different choice 
in which separate concerns are presented separately.

Interface Implementation
With the representation invariants of maze, rat, and path in hand, we can turn to cod-
ing the queries and actions we require. The six operations used in the exploration 
algorithm are easily coded with the aid of auxiliary constant arrays of “unit vectors” 
in the four directions:



256 · Running a Maze

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   // Unit vectors in direction d =          0,     1,    2,    3
   //                                       up, right, down, left
      private static final int deltaR[] = { -1,     0,    1,    0 };
      private static final int deltaC[] = {  0,     1,    0,   -1 };
   public static void TurnClockwise() 
      { d = (d+1)%4; }
   public static void TurnCounterClockwise() 
      { d = (d+3)%4; }
   public static void StepForward()
      { r = r+2*deltaR[d]; c = c+2*deltaC[d]; move++; M[r][c] = move; }
   public static boolean isFacingWall() 
      { return M[r+deltaR[d]][c+deltaC[d]]==Wall; }
   public static boolean isAtCheese() 
      { return (r==hi)&&(c==hi); }
   public static boolean isAboutToRepeat() 
      { return (r==lo)&&(c==lo)&&(d==3); }
   } /* MRP */

M6

The use of modular arithmetic for TurnClockwise and TurnCounterClockwise 
is standard, but if you are rusty on it, you may incorrectly fall into coding counter-
clockwise as (d-1)%4, which doesn’t work because when d-1 is negative (d-1)%4 
is also negative. If you were to make this mistake, the code would index deltaR and/
or deltaC with a negative number, which will cause a “subscript-out-of-bounds” 
error.

The code for StepForward is only correct when stepping into an as-yet unvisited 
cell. For now, we continue to ignore the looming question of how to excise a side-
path exploration from an exhaustive path to make a direct-path.

Before we forget, we need to return to class RunMaze, the client of these six oper-
ations in class MRP, and provide qualified names for them. When code in one class 
uses a name defined or declared in another class, it must qualify it:

/* Rat running. See Chapter 15 of text. */
class RunMaze {
   ...
   /* Compute a direct path through the maze, if one exists. */
   private static void Solve() {
      while ( !MRP.isAtCheese() && !MRP.isAboutToRepeat() )
         if ( MRP.isFacingWall() ) MRP.TurnClockwise();
         else {
            MRP.StepForward();
            MRP.TurnCounterClockwise();
            }
      } /* Solve */
   ...
   } /* RunMaze */

R6



Data Representation · 257

I/O Methods
We have focused on the important query and action methods of class MRP, but it 
must also support input/output. Class RunMaze has Input and Output methods, 
but they are in the client application, which knows nothing about the data represen-
tation. We must implement corresponding methods in class MRP, where we have the 
needed access to the representation variables.

Input. Because input is often fussy, we choose at this stage to just temporarily 
hard-code the degenerate 1-by-1 maze:

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   public static void Input() {
      /* Maze. As per representation invariant. */
         N = 1;                      // Size of maze.
         M = new int[2*N+1][2*N+1];  // Maze, walls, and path.
         lo= 1; hi = 2*N-1;          // First and last indices of maze.
         M[0][1] = M[1][0] = M[1][2] = M[2][1] = Wall;
      /* Rat. Place rat in upper-left cell facing up. */
         r = lo; c = lo; d = 0;
      /* Path. Establish the rat in the upper-left cell. */
         move = 1; M[r][c] = move;
      } /* Input */
   } /* MRP */

M7

In writing this code, we use the representation invariants for mazes, rats, and paths 
as guides and checklists for what to write. Hand-coding a simple maze rather than 
addressing the general case gives us confidence as we approach our first test of 
the algorithm that the sample maze is properly represented. It also minimizes our 
investment, a precaution that acknowledges the possibility of a surprise that would 
necessitate changing something about the representation.

The Input routine of the algorithm in client class RunMaze invokes MRP.Input 
in the server class MRP:

/* Rat running. See Chapter 15 of text. */
class RunMaze {
   /* Input a maze, or reject the input as malformed. */
   private static void Input() { MRP.Input(); } /* Input */
   ...
   } /* RunMaze */

R7

Output. As with input, we don’t have access to representation details in RunMaze, 
so we must rely on an output routine provided by class MRP. Writing and debugging 
a general-purpose PrintMaze method now will enable us to work with more com-
plicated examples later, secure in the knowledge that at least the output routine is 
working.

We have a choice: Ignore the fact that we will eventually need to deal with visit-se-
quence numbers with differing numbers of digits, or bite the bullet and deal with that 
now. We do the latter (to simplify the presentation in the text), although there are 
good reasons to defer it (until we have an example in hand to test it on). The code 
traverses the elements of the maze in row major order, and for each element creates 



258 · Running a Maze

an appropriate string representation that consists of two characters, padded on the 
right, if necessary, by blanks:

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   /* Output N-by-N maze, with walls and path. */
   public static void PrintMaze() {
      for (int r = lo-1; r<=hi+1; r++) {
         for (int c = lo-1; c<=hi+1; c++) {
            String s;
            if (M[r][c]==Wall) s = "#";
            else if (M[r][c]==NoWall || M[r][c]==Unvisited) s = " ";
            else s = M[r][c]+"";
            System.out.print((s+"    ").substring(0,3));
            }
         System.out.println();
         }
      } /* PrintMaze */
   } /* MRP */

M8

The Output method of the algorithm in client class RunMaze either prints 
“Unreachable”, or invokes the MRP.PrintMaze method in the server class MRP:

/* Rat running. See Chapter 15 of text. */
class RunMaze {
   ...
   /* Output the direct path found, or “unreachable” if there is none. */
   private static void Output() {
      if (!MRP.isAtCheese()) System.out.println("Unreachable");
      else MRP.PrintMaze();
      } /* Output */
   } /* RunMaze */

R8

Initial Tests
We are now ready to test the code.

It is helpful to never stray far from a correct, albeit partial, program so that when 
something goes wrong (as it inevitably does) we won’t have far to look for the prob-
lem. In support of this approach, it is often useful to write simplified initial versions 
of procedures so that we may get off the ground quickly, and also control the com-
plexity of the code under test at any one time. We hard-coded the 1-by-1 maze in 
MRP.Input in that spirit, but in the case of method RunMaze.Solve, have gotten 
a little ahead of ourselves. Accordingly, we put it aside, and temporarily replace it 
with an empty method.

Compiling and running the program at this juncture allows us to remove syntax 
errors, confirm that all variables are declared and initialized, and obtain output. In the 
event that we had forgotten to initialize some variables in Input, or had blundered 
in indexing M, we would be able to make corrections easily in this highly controlled 
setting. However, all is well.

Test 1.  The program runs, and produces the correct output. We show the input 
graphically at the right, but recall that it is hard-coded.

#
#  1  #

#
input output



Direct Paths · 259

Test 2. With very little extra effort, we can change MRP.Input to hard-code the 
empty 2-by-2 maze. We can then confirm that we obtain the output “Unreachable”. 
This output is wrong, of course, but that is just a reflection of the fact that Solve 
currently does nothing. Doing this, however, confirms that we can at least compile 
a version of the hard-coded empty 2-by-2 maze, test the routine isAtCheese, and 
exercise the conditional statement in RunMaze.Output.

Test 3. We have gone about as far as possible with an empty Solve method, so 
it is time to adopt the real one. On the empty 2-by-2 maze above, we get our first 
substantive output. The rat runs around the outer wall clockwise, as expected.

Test 4. It is a simple matter to change MRP.Input to hard code an obstacle in 
the maze. We run the program again, and the rat avoids the obstacle. Although it 
appears to be running counterclockwise around the outside perimeter of the maze, 
this is an illusion because it is really running clockwise around the obstacle, but stum-
bles into the cheese first. We are off to a good start.

Direct Paths
So far, the code we have written for Solve assumes that the exploration path is the 
desired direct path. Said another way, the code assumes the rat never needs to back 
out of a cell it has already visited. But as we have seen in our initial motivating exam-
ple, the rat can reach the end of a cul-de-sac, at which point it must retrace its steps, 
effectively canceling a side-excursion.

It is often effective to reason about a phenomenon using the simplest example we 
can devise, and we can do that in our 2-by-2 maze by orienting the obstacle so there 
is a cul-de-sac in the upper-right cell. The rat will then have to back out of that cell, 
reenter the upper-left cell (facing down), StepForward into the lower-left cell, and 
then proceed to the lower-right cell:

1 1 2 1 1
2

1
2 3

Let’s see what happens in this case. We will not be surprised to get the wrong out-
put because we know that our code is oblivious to the fact that the rat can enter a 
cul-de-sac. This is the advantage of testing in a controlled setting: Problems are not 
hard to pinpoint.

Test 5. We easily change MRP.Input to hard code the maze above, and try our 
code. We confirm that we obtain this disappointing output.

Method Solve ignores the fact that it is about to renter a cell that is on the current 
path, just keeps going, and overwrites the path.

As a first step to addressing direct paths, we need a way for Solve to detect the 
imminent reentry to a cell that on the current path. MRP has no such query, so we 
add one to its interface:

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   public static boolean isFacingUnvisited()
      { return M[r+2*deltaR[d]][c+2*deltaC[d]] == Unvisited; }
   ...
   } /* MRP */

M9

Unreachable

input output

#     #
#  1     2  #

  
#        3  #

#     #
input output

#     #
#  1  #     #

  
#  2     3  #

#     #
input output

#     #
#  3     2  #  

      #
#  4     5  #  

#     #
input output



260 · Running a Maze

and update Solve to use it:

/* Rat running. See Chapter 15 of text. */
class RunMaze {
   ...
   /* Compute a direct path through the maze, if one exists. */
   private static void Solve() {
      while ( !MRP.isAtCheese() && !MRP.isAboutToRepeat() )
         if ( MRP.isFacingWall() ) MRP.TurnClockwise();
         else if ( MRP.isFacingUnvisited() {
            MRP.StepForward();
            MRP.TurnCounterClockwise();
            }
         else Retract();
      } /* Solve */
   ...
   } /* RunMaze */

R9

Rather than blindly reentering an already-visited cell and overwriting the path 
number there, we stop and pass the buck to routine Retract to do the right thing, 
whatever that may be.

Consider the simple 2-by-2 example at the exact moment when Retract is called: 
The rat is in the upper-right cell, and is about to reenter the upper-left cell. It will be 
convenient to introduce some terminology. We shall call the upper-left cell, which 
is on the current path, and to which it now is about to return, a reentry cell. The rat 
must truncate the current path by one cell, return to the reentry cell, and orient itself 
passed the opening from which it came.132

We accomplish retraction by stepping into the reentry cell using method 
StepBackward, which code can be viewed as systematically undoing the effect of 
method StepForward:

/* Rat running. See Chapter 15 of text. */
class RunMaze {
   ...
   /* Unwind abortive exploration. */
   private static void Retract () {
      MRP.StepBackward();
      MRP.TurnCounterClockwise();
      } /* Retract */
   ...
   } /* RunMaze */

R10

First, a terminological clarification. When we say “step backward”, we do not mean 
“step in the opposite direction from which the rat is facing”. Rather, we mean step 
forward in the direction the rat is facing, but effectively moving backward along the 
current path, thereby undoing the abortive visit. 

On returning to the reentry cell, the rat’s orientation d is 180 degrees from the way 
it faced when it previously left that cell. Had it skipped doing so, it would have con-
tinued another 90 degrees clockwise, omitting the side excursion to the cul-de-sac. 

132. This point in the solution development is labeled “Start of garden path”, for subsequent 
reference. We are about to “inadvertently” make a mistake. Can you spot it?



Input · 261

We get that effect now by turning 90 degrees counterclockwise on returning to the 
reentry cell. 

Method StepBackward, which depends on the data representation, is defined 
in class MRP:

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   public static void StepBackward() {
      M[r][c] = Unvisited; move--;
      r = r+2*deltaR[d]; c = c+2*deltaC[d];
      }
   ...
   } /* MRP */

M10

This code erases the visit number from the current cell, decrements the move counter, 
and steps into the reentry cell.

Test 6. We run our code on the Test 5 example with the above version of 
Retract, and obtain the correct output. We are ecstatic. 

Could it be that we are done? We will surely need to test many more mazes, but 
we have pretty well exhausted what we can do with a 2-by-2 maze, and continuing 
to hard-code larger mazes will be tedious. So, it is time to bite the bullet, and write 
code for MRP.Input that handles arbitrary mazes.

Input
We start with the version of MRP.Input in which we hand-encoded a small maze, 
and turn it into a template. The principle is to change as little as possible, lest we break 
something that has already been tested and works. The maxim is:

☞ Maximize code reuse.

We already have the basic structure and variable initializations, and only need to 
change where the maze size and walls come from:

private static void Input() {
   /* Maze. */
      N = ⟨value for N⟩; M = new int[2*N+1][2*N+1];
      lo = 1; hi = 2*N-1;
      ⟨Define each element of M⟩
   /* Rat. */
       r = lo; c = lo; d = 0;
   /* Path. */
      move = 1; M[r][c] = move;
   } /* Input */

A straightforward input format is a line containing the integer N, followed by 
2·N+1 lines, where each line consists of 2·N +1 characters. Thus, the input data is 
(essentially) an external image of array M. Each of the values in the input can be inter-
preted according to where it is in the (2·N+1)-by-(2·N+1) input matrix:

#     #
#  1        #  

      #
#  2     3  #  

#     #
input output



262 · Running a Maze

• In positions corresponding to maze cells, we can (forgivingly) ignore the input 
and hard-code the cell as Unvisited.

• In positions corresponding to walls (or no walls), a space in the input can rep-
resent “no wall”, and any other character can represent a wall.

• In positions corresponding to unused elements of M, we can use any encoding 
because these cells will be ignored. We adopt the same encoding as is used for 
walls.

Here is the code:

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   /* Input N, and (2N+1)-by-(2N+1) values; non-blanks are walls. */
   public static void Input() {
      /* Maze. */
         Scanner in = new Scanner(System.in);
         N = in.nextInt(); in.nextLine();
         M = new int[2*N+1][2*N+1]; // Maze, walls, and path.
         lo = 1; hi = 2*N-1;        // Left and right ends of maze.
         for (int r=lo-1; r<=hi+1; r++) {
            String line = in.nextLine();
            for (int c=lo-1; c<=hi+1; c++)
               if ((r%2==1) && (c%2==1)) M[r][c] = Unvisited;
               else if (line.substring(c,c+1).equals(" "))
                  M[r][c] = NoWall;
               else M[r][c] = Wall;
            }
      /* Rat. */
         r = lo; c = lo; d = 0;
      /* Path. */
         move = 1; M[r][c] = move;
      } /* Input */
   } /* MRP */

M11

The code is a bit fussy, and may take a few runs to get the calls to nextLine right. 
Test 7. We start with input mazes for which we have already tested the algorithm, 

the 1-by-1 case (A), and the 2-by-2 cases (B1, B2, B3). We confirm, by getting the 
same output for each case that we got before, that MRP.Input seems to be work-
ing correctly.133

133. As written, routine MRP.Input obtains input from System.in, which typically corre-
sponds to text entered interactively. It is often desirable to obtain input from a text file, e.g., it 
is tedious to repeatedly reenter the same, or slightly different, inputs. In lieu of files, which we 
do not cover in this text, a useful trick is to temporarily embed the input within the program 
as a String constant. In this string, we represent the end-of-line character with the escape 
sequence “\n”. For example, to embed the 2-by-2 maze with only exterior walls (input B1), 
we can replace the line:

Scanner in = new Scanner(System.in);

with the line:

Scanner in = new Scanner("2\nxxxxx\nx   x\nx    x\nx    x\nxxxxx\n");

This allows us to repeatedly retest on the same maze without risk of making a typo in the input.

1
xxx
x x
xxx

A

2
XXXXX
X   X
X   X
X   X
XXXXX

B1

2
XXXXX
X X X
X X X
X   X
XXXXX

B2

2
XXXXX
X   X
X XXX
X   X
XXXXX

B3



Testing, revisited · 263

Testing, revisited
We can now test our code on a myriad of new examples. Depending on our imagina-
tion (or lack thereof), we may find that it works correctly on each example we devise, 
including such seemingly-robust cases as our original motivating example. However, 
the program may not in fact work correctly on all possible input mazes. Mere multi-
plicity of test cases does not demonstrate generality:

☞ Beware of premature self-satisfaction.

The euphoria of getting code to work correctly on many examples can easily lead to 
self-deception. If we were to stop now, we might leave behind a latent bug.

How can we go about assuring the full generality of a solution? In principle, we 
are not supposed to have missed any cases because we were supposed to have been 
following the precept:

☞ Code with deliberation. Be mindful.

But doing so requires considerable discipline and diligence, and in the excitement 
of getting code to work, it is all too easy to let our guard down, and forget to fully 
deliberate. Aware of this all-too-human shortcoming, we must:

☞ Test programs thoroughly.

But this then begs the question: How do we assure the full generality of test data?
So, where do we stand at this point in developing our solution? 
We believe we have a correct program, but can’t be absolutely sure. The program 

appears to work on many examples. We think we have been systematic and cov-
ered all cases, but we may be kidding ourselves. We have three choices: Think more 
deeply about code, think more deeply about mazes, or declare victory and stop (at 
our peril). 

Let’s return to program development and review key decisions.

Code Development, revisited
Our algorithm has three key elements: exhaustive exploration, detection of side-ex-
cursions, and retraction of side-excursions. Let us reconsider each in turn.

Exhaustive exploration. We coded a systematic maze exploration using the left-
hand-on-wall rule, modified to allow us to temporarily take our paw off the wall and 
face a door. Is this rule correct, and if so, what exactly is the argument? Or conversely, 
can we spot a counterexample, i.e., a special case for which the rule is wrong? 

Looking for a concrete counterexample for which the rule might fail is easier than 
constructing an abstract correctness argument, so let’s start there. We seek a maze 
for which the rat would fail to get to reachable cheese. 

In the section Extended Example: Running a Maze of Chapter 4 (p. 85), we 
already mentioned cases where the left-hand rule just squeaks by:

• The rule would have failed if the rat didn’t start by facing an outside wall.
• The rule would have failed if mazes were permitted to have breaks in the out-

side wall.134
• The rule would have failed if the cheese were permitted to be in an isolated inte-

134. Why does 1 break in the wall not sink the left-hand rule?

781
62
543

5 4 3
6 1 2
7 8

1 2 3 4 5
16 6
15 7
14 8
13 12 11 10 9



264 · Running a Maze

rior cell, in which case the rat would run around the outer perimeter, and never 
stumble into it.

We fail to devise a counterexample, but are struck by the delicate nature of the 
problem. Were it not for the carefully-crafted constraints in the problem setup, the 
left-hand-on-wall rule would definitely not have been correct.

Our failure to find a counterexample is worthwhile, nonetheless, because the 
effort nets insights that may prove useful in making a solid argument that the rule is 
correct: (a) the rat starts facing an outside wall, (b) the maze is closed to the outside 
world, (c) the cheese is in a room with an outside wall. The left-hand-on-wall rule 
does not, in fact, perform an exhaustive exploration (in that it does not eventually 
visits every reachable cell of the maze), but seems adequate nonetheless.

So, what exactly is the correctness argument? Presumably, some form of mathe-
matical induction is needed, but what exactly is the integer parameter on which one 
would be inducting? One possibility would be the number of additional interior 
peripheral-wall segments constructed by the process of pulling on a rubber sheet 
(red) on the interior surface of the peripheral wall, as described on page 89 and 
illustrated in the diagram to the right, starting from a maze with no interior walls. Let 
us acknowledge that we don’t have an airtight argument, and move on.

Detection of side excursions. Consider any path c1,c2,…,cm through the cells 
of a maze, where c1 is the upper-left cell, and cm is the lower-right cell. Let cs be the 
earliest repeated occurrence of a cell in this list, and let cr be the first repeated occur-
rence of that cell. Then cr+1,…,cs is an unnecessary side-excursion that can be excised 
from the path, leaving behind a shorter and (more) direct path to the cheese. Our 
code detects the earliest occurrence of a repeated cell, and calls Retract to excise it 
from the path. It does this for each and every subsequent occurrence of any repeated 
cell. Thus, if and when it reaches the lower-right cell, the code has at least attempted 
to excise every side-excursion. On the assumption that the excising code is correct, 
the path will be direct. This reasoning seems unassailable, but relies on the correct-
ness of method Retract. Perhaps a careful argument about Retract would reveal 
an incorrect assumption that led us down a flawed garden path on page 260.

Retraction of side-excursions. When we coded Retract, we argued that a 
small example was helpful, and so, we used the simple 2-by-2 maze of Test 6. We 
detected the cul-de-sac in the upper-right corner just as the rat, facing left, was about 
to reenter the upper-left cell. We coded Retract as:

/* Unwind abortive exploration. */
private static void Retract() {
   MRP.StepBackward();
   MRP.TurnCounterClockwise();
   } /* Retract */

and validated this solution.
Looking for generality, we considered (but did not explicitly mention in the text) 

bigger mazes, and were pleased to see that the rat could back out deeper cul-de-sacs, 
and continue on to the cheese. For example, we tested the 3-by-3 maze shown below, 
with a trace of the rat’s behavior:

1 1 2 1 2 3 1 2 1 1
2

1
2 3 4

5
. . .

exteriorinterior

exteriorinterior



Direct Paths, revisited · 265

Next, we considered our original motivating example, and were again pleased to 
see that our code could handle cul-de-sacs with arbitrary zigs and zags, as well as 
multiple cul-de-sacs, and continue on to the cheese.

We had started with a small and simple example, but in seeking generality, moved 
on to longer cul-de-sacs, and then to multiple, higgledy-piggledy cul-de-sacs. All of 
this built confidence in our solution. Furthermore, not only did the solution work 
on paper, but we were able to run the code on these very examples, and have the 
pleasure of getting correct output. 

But this was the precise moment of danger, where overconfidence led to letting 
our guard down. Pleased with having generalized paths in two ways, size and straight-
ness, we neglected a third issue: topology. Said differently, all mazes we considered 
consisted of cramped, 1-cell-wide corridors. But why not a maze with a wide-open 
space — a room, as it were?

Test 8. It is easy enough to find out what happens in this case; we just run the 
code on the maze shown in the figure (below, left), and get the disappointing output 
shown in the figure (below, right). At first, the presence of a direct path to the cheese 
leaves us befuddled as to where the spurious 3 and 4 came from. Then, we notice that 
the path to the cheese is also incorrectly numbered. It's a mess:

1 1 2 3
5 4

1 2 3
4

1 3
4

1 3
3 4

1 3
3 4
4 5 6

. . . . . .

The trace shown in the four central panels of the figure reveal the mystery.
Having made a clockwise excursion around the 2-by-2 room, and having reached 

the cell numbered 5, the rat discovered that it was about to enter the already-visited 
reentry cell numbered 2. It then stepped “backward” into that cell (erasing 5, and 
decrementing move to 4), and turned counterclockwise (to face left). The rat was 
programmed to treat a reentry cell as the place from which it had entered a cul-de-
sac, and it acted accordingly.

The rat again faced an already-visited cell (numbered 1). So, it again stepped 
(backward) into that cell (erasing 2, and decrementing move to 3), and turned coun-
terclockwise (to face down).

From there, it proceeded to the cheese, leaving chaos behind.
Let's call such a side-excursion a loop. In effect, we had only considered degenerate 
loops, but this is a more general case. Back to the drawing board, as they say.135

Direct Paths, revisited
In the general case, the rat must not complete the loop; rather, it should unwind it. The 
rat must repeatedly “step backward” into the cell from which it actually came, until 
finally backing into the reentry cell. In all the preceding cases, immediately stepping 
into the reentry cell effectively unwound a length-1 loop, but this doesn't always 
work, as we have now seen.

For the present example, the rat must step backward from 5 to 4, from 4 to 3, and 
from 3 to 2, while (like Hansel and Gretel) picking up the numbered breadcrumbs 
along the way.  Then, having reached cell 1 facing down, it’s on its way:

135. We started “leading you down the garden path” on page 260. It is worthwhile reread-
ing the text at that point to review how we convinced ourselves we were proceeding with all 
due care and deliberation.

1 2 3 6 7
4 5 8

1 2 3
4 5

6 7
9 8

1 2 3
5 4
6 7

8
9 10 11



266 · Running a Maze

1 1 2 3
5 4

1 2 3
4

1 2 3 1 2 1
2. . . . . .

1
2
3 4 5

Accordingly, we replace the code

/* Unwind abortive exploration. */
private static void Retract () {
   MRP.StepBackward();
   MRP.TurnCounterClockwise();
   } /* Retract */

with the code;

/* Unwind abortive exploration. */
private static void Retract () {
   while ( /* not unwound */ ) {
      MRP.FacePrevious();
      MRP.StepBackward();
      }
   MRP.TurnCounterClockwise();
   } /* Retract */

where FacePrevious reorients the rat to face the cell from which it came.136
Our proposed code unwinds the loop, but when should it stop? Specifically, 

should the rat “unwind” cell 2, or just return there facing an appropriate direction? 
Interestingly, the example is a special case that is deceptive and misleading. 

Reasoning from the example, we see that the topology does require the rat to even-
tually back out from 2 (as well as from 5, 4, and 3). Thus, we are sorely tempted to 
write the loop condition for this unwinding so that it (incorrectly) does exactly that. 
However, were we to do that, we would risk repeating our unfortunate experience 
of overconfidently declaring victory when we get the code working on a particular 
example, and fail to take into account yet another group of mazes!

There is another seductive observation that (incorrectly) suggests that the rat 
should unwind cell 2 now. If it were to return to cell 2 (from the right, after unwind-
ing from 5), and turn counterclockwise (as the present version of Retract does), it 
will be facing down. Upon returning to Solve from Retract, the rat would then 
step forward through the opening at the bottom, and begin traversing the loop all 
over again, albeit this time in the counterclockwise direction. We may (incorrectly) 
reason that the problem would have been caused by failing to have unwound cell 2, 
and that if we had unwound cell 2, then this bizarre behavior would not have hap-
pened. But the problem is not that we didn’t unwind 2 now; the problem is that on 
returning to cell 2, we established the wrong orientation. 

136. In the Knight’s Tour, section Alternative Board and Tour Representations, we consid-
ered representing a tour as a list of ⟨row,column⟩ pairs rather than as sequence numbers within 
the cells of the board. It is interesting to note that if we had used such a list representation for 
the Rat's Tour, we might well have not overlooked the case of general loops. Rather, to trim a 
side-excursion back to the reentry cell, we might have removed coordinate pairs from the list 
one at a time, from right to left, and in so doing would have done the proper unwinding. A list 
that obeys a Last In First Out (LIFO) discipline is called a stack. The rightmost element of the 
list is called the top of the stack, and removing it is called popping the stack.

1 2 5
3 4



Direct Paths, revisited · 267

What is the issue? Or rather, what question should we be asking ourselves in order 
to decide about the termination condition for the loop in Retract?

The question: Is the rat finished exploring the cell at the head of a loop when, after 
detecting the loop, the side excursion is excised? Or said another way: Is there a maze 
such that the direct path to the cheese must include that “loop-head” cell? Or in a 
third way: Call the four sides of a cell, in clockwise order, a, b, c, and d. Is there a 
maze such that one may enter a loop-head cell via a, begin a loop via b, discover the 
loop via c, and after trimming the b-c side excursion (backwards), continue on a 
direct path via d?

While at first it may not be obvious that there is such a maze, eventually we find 
one. We arrive at the loop-head cell 3 from cell 2 (via side a). From there, we begin 
a side-excursion that starts with cell 4 (via side b). The excursion proceeds from 
cell 4 to cells 5, 6, 7, 8, 9, 10, whereupon the loop-head cell 3 is detected (via side 
c). The rat must unwind 10, 9, 8, 7, 6, 5, and 4, and then proceed left from 3 to the 
cheese (via side d), resuming the numbering of the next cell as 4. If we had mistak-
enly unwound the loop-head cell 3 in Retract, we would have returned to 2, and 
from there to 1, at which point we would have incorrectly declared “Unreachable”!

This analysis resolves the question of how far to unwind, but leaves open the ques-
tion of exactly which way to face once we return to a loop-head cell. Consider how 
the rat would have turned in its exhaustive exploration, back when it was not wor-
rying about numbering (and un-numbering) of cells along the path. From the cell 
numbered 10 in the example, it would have stepped forward (into the cell numbered 
3) and turned counterclockwise (facing left). Despite the intervening loop unwind-
ing, the rat must now end up facing that same direction. We can accomplish this if, 
at the same time as we record the location of the loop-head cell (so that we know 
when to stop the loop unwinding), we also record the rat’s orientation (so that we 
can restore it back to that orientation after unwinding the loop).

The way to the solution is now clear, but we are at another moment of truth: In 
which class should this code go? Specifically, is Retract a large-grained service of 
MRP, with full access to the data representation therein, or is Retract a client oper-
ation in RunMaze, which must be implemented in terms of fine-grained MRP services 
that we must now invent?

The temptation to do the former is great. In fact, here is an implementation of 
Retract that we could create inside MRP, and be done:

/* Unwind abortive exploration. */
public static void Retract() {
   int neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
   int neighborDirection = d; // Save direction.
   while ( M[r][c] != neighborNumber ) { 
      FacePrevious();
      StepBackward(); 
      }
   d = neighborDirection;     // Restore direction.
   TurnCounterClockwise();
   } /* Retract */

where FacePrevious remains to be created (also in MRP). By placing Retract 
inside MRP, the code highlighted in blue takes advantage of direct access to the data 
representation. 

Encapsulation and information hiding is like a tax that we force ourselves to pay 

a
d b

c

1 2 5 6
3 4 7
10 9 8



268 · Running a Maze

now so that we may garner (possible) benefits later. In the short run, it is undeniably 
a nuisance and an annoyance. But experience has shown that it is good medicine. 
Today’s throwaway programs have a way of growing into substantial bodies of code 
that stick around for years to come. And who knows when we are going to decide to 
change the data representation? 

Just as we need to be on guard against leaking data-representation details out from 
the MRP service to its client, so too we need to also guard against leaking algorithmic 
details into the MRP service. We must strive to invent appropriate algorithm-indepen-
dent, fine-grained methods for MRP that are sufficient for the client to implement a 
maze-running algorithm that is representation independent. It is important to learn 
how to tease code apart so one achieves such a separation of concerns.

FacePrevious seems like a suitable algorithm-independent, micro-level oper-
ation that MRP can reasonably support. It basically says: The rat originally arrived at 
the present cell from some neighboring cell; aim it in that direction. Implementing 
this will not be hard. We just must find the neighboring cell that is numbered 1 less 
than the current cell. Let’s add this to the MRP interface:

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   public static void FacePrevious() {
      int d = 0;
      while ( isFacingWall() ||
               M[r][c]-1!=M[r+2*deltaR[d]][c+2*deltaC[d]] ) d++;
      } /* FacePrevious */
   ...
   } /* MRP */

M12

Retract, on the other hand, is algorithmic, and has non-local reach. It doesn’t 
belong in MRP. But if it is to be implemented in the client class RunMaze, the parts 
in blue (which access the data representation) must be replaced by uses of new, gen-
eral-purpose routines that we add to the MRP interface. 

In effect, we must equip the rat with an arrow that it can orient and toss into the 
loop-head cell when it first discovers it. Then, it can use later discovery of that arrow 
to know both when the unwinding is complete, and the direction in which to face at 
that time. The needed micro-operations are:

• The rat is facing some neighboring cell in a given direction, and needs to remem-
ber this.

• As the rat retraces its steps, it would like to test whether it has arrived in that 
remembered cell.

• The rat then needs to restore it orientation to be as it was when it first faced 
that neighbor.

We can implement these operations as methods:
• RecordNeighborAndDirection
• isAtNeighbor
• RestoreDirection

with the following code:



Boundary Conditions · 269

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   private static int neighborNumber;     // Recorded visit #.
   private static int neighborDirection;  // Dir. at time of recording.
   public static void RecordNeighborAndDirection () {
      neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]];
      neighborDirection = d;
      }
   public static boolean isAtNeighbor()
      { return M[r][c]==neighborNumber; }
   public static void RestoreDirection()
      { d = neighborDirection; }
   ...
   } /* MRP */

M13

Notice how the static variables neighborNumber and neighborDirection 
are used to record the location and orientation of the rat’s arrow. Declaring 
these variables static, i.e., at the level of the class as a whole, and not local to 
a method, allows their values to be preserved between the initial call to method 
RecordNeighborAndDirection and subsequent calls to methods isAtNeighbor 
and  RestoreDirection.

We can now define method Retract in the client class RunMaze, replacing the 
blue code with invocations of the new methods that we have added to MRP’s inter-
face:

/* Rat running. See Chapter 15 of text. */
class RunMaze {
   ...
   /* Unwind abortive exploration. */
   private static void Retract() {
      MRP.RecordNeighborAndDirection();
      while ( !MRP.isAtNeighbor() ) {
         MRP.FacePrevious();
         MRP.StepBackward();
         }
      MRP.RestoreDirection();
      MRP.TurnCounterClockwise();
      } /* Retract */
   ...
   } /* RunMaze */

R11

We are ready for another test.
Test 9. The program with the new version of Retract runs successfully on the 

Test 8 example.

Boundary Conditions
We have followed the precept:

☞ Boundary conditions. Dead last, but don’t forget them.



270 · Running a Maze

None jumped out at us in the course of developing the program, but the time has 
come to think hard about what we might have overlooked. It is a good idea to reread 
the problem statement carefully, and confirm that we have considered every require-
ment.

Our attention is drawn to this sentence:

Your program should check that the input data correspond to a well-formed 
maze, and output “Malformed input” if it does not.

How might the input have failed to correspond to a well-formed maze, or be other-
wise malformed? The problem background section states:

A solid wall surrounds the entire grid of cells, so there is no escape from the 
maze.

This requirement was left unchecked. Given non-compliant input, the rat would have 
wondered out of the maze (and caused a “subscript-out-of-bounds” exception). We 
can correct this in a fashion consistent with our forgiving approach, and insert any 
missing walls.

On reflection, it occurs to us that silent correction may not satisfy the persnickety 
requirement that all malformed input be reported, but we shall not dwell on this.

As second, more pernicious form of malformed input occurs when the requisite 
number or types of input values is not provided in the data. For example, a runtime 
exception will arise if the first line does not have the form of an integer. Similarly, 
the program will crash if one of the lines of the maze does not contain the required 
number of characters. All such errors can be handled in one fell swoop by enclosing 
the input code in a try-catch construct:137

137. We try to read the input, but if it is malformed, an error exception will be “thrown”, 
which will be “caught” by the innermost pending catch for exceptions. In this case, we abort 
execution by invoking System.exit.



Self-Checking Code · 271

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   /* Input N, and (2N+1)-by-(2N+1) values; non-blanks are walls. */
   public static void Input() {
      /* Maze. */
         Scanner in = new Scanner(System.in);
         try {
            N = in.nextInt(); in.nextLine();
            M = new int[2*N+1][2*N+1];
            lo = 1; hi = 2*N-1;
            for (int r=lo-1; r<=hi+1; r++) {
               String line = in.nextLine();
               for (int c=lo-1; c<=hi+1; c++)
                  if ((r%2==1) && (c%2==1)) M[r][c] = Unvisited;
                  else if (line.substring(c,c+1).equals(" ")) 
                     M[r][c] = NoWall;
                  else M[r][c] = Wall;
               }
            /* Insert any missing walls. */
               for (int k=lo; k<=hi; k=k+2) {
                  M[lo-1][k] = Wall; M[hi+1][k] = Wall; // top; bottom
                  M[k][lo-1] = Wall; M[k][hi+1] = Wall; // left; right
                  }
            }
         catch (Exception e) {
            System.out.println(“Malformed Input”);
            System.exit(1);
            }
      /* Rat. */
         r = lo; c = lo; d = 0;
      /* Path. */
         move = 1; M[r][c] = move;
      } /* Input */
   ...
   } /* MRP */

M14

Quite possibly, you may have inadvertently entered erroneous input while testing 
your program earlier. In that case, you might well have decided to write the self- 
protective code earlier.

Self-Checking Code
We have been humbled by the subtleties of the maze-running problem, and are now 
mindful of our own limitations. In particular, we almost missed the possibility of 
side-excursions that involve a loop. In the absence of an airtight proof of correct-
ness, we return to the question of how to gain greater confidence in our program. 

The four error cases we must consider are that for a valid input maze the pro-
gram may:

• Incorrectly purport to have found a valid path to the cheese, but that is not so.
• Incorrectly report “unreachable” when there is a valid path to the cheese.
• Crash, with a runtime error.
• Get caught in an infinite loop, and run forever.



272 · Running a Maze

Finally, there is the small matter of the infinite number of legal mazes to consider. 
We address the first two issues here, and the remaining issues in the next section.

Consider visually inspecting a large maze, and notice that you cannot easily tell 
whether or not it has a solution: You need to perform a search, just as our program 
does. But suppose the image shows a claimed path, and you ask the same question: 
Does the maze have a solution? You can (partially) answer the question by checking 
the path shown. If it is indeed valid, you can answer “yes”; if it is not, you can refute 
the claim, but still don't know whether a solution exists. 

Notice that an algorithm for checking the validity of a path is different from a search 
to find a path, and is far easier to perform. We can code it up, say, as the boolean 
method MRP.isSolution, and incorporate it into our program in an assert-state-
ment, at the very end:138

assert MRP.isSolution(): "internal program error";

If our program contains a bug, and makes a false claim, the assert will detect that, 
and abort execution. 

Importantly, self-checking can only be used to debunk a proposed path that is bad; 
it cannot refute a claim that no such path exists, i.e., the second issue listed above. 
To do so would requires a counterexample to the claim, i.e., a valid path. But finding 
such a path is what the program is all about in the first place!

What level of assurance is obtained from self-checking? It is certainly far better 
than nothing, but isn't perfect because isValidPath is itself code, and may contain 
its own bug(s). For example, an (incorrect) implementation as:

static boolean isSolution() { return true; }

would never fail. Less overt errors in isSolution may overlook invalid paths only 
on rare occasions, but cannot be ruled out—at least without a proof of correctness of 
the self-checking code. However, because of the (relative) simplicity of isSolution, 
such a proof is conceivable.

An implementation of isSolution can walk the path backward from the low-
er-right corner, and confirm that it started in the upper-left corner:

/* Return false iff rat reached lower-right cell via an invalid path.*/
public static boolean isSolution() { return isValidPath(hi,hi); }

/* Return false iff rat reached cell ⟨p,q⟩ via an invalid path.*/
public static boolean isValidPath(int r, int c) {
   if ( M[r][c]==Unvisited ) return true; // No claim if Unvisited. 
   else
      while ( !((r==lo)&&(c==lo)) ) {
         /* Go to any valid predecessor; return false if there is none. */
            int d = 0;
            while ( d<4 && ( M[r+deltaR[d]][c+deltaC[d]] == Wall ||
                    M[r+2*deltaR[d]][c+2*deltaC[d]] != M[r][c]-1) ) d++;
            if (d==4) return false;
            r = r+2*deltaR[d]; c = c+2*deltaC[d];
         }
   return true; // Reached upper-left cell.
   } /* isValidPath */

138. The assert-statement was introduced in Chapter 3 on page 49, and is further discussed 
in Chapter 19, section Defensive Programming (p. 335). 



Testing, revisited yet again · 273

Note that variables r, c, and d in isValidPath are all local so that it can be called 
without disturbing the global MRP state variables r, c, and d.139

Testing, revisited yet again
In the absence of a proof of correctness that holds for any possible maze, we must be 
resigned to the possibility that some input may cause the program to crash or loop 
forever. Two (partial) remedies are to exhaustively test our code on all legal mazes of 
size up to a given size, or to test our code on some number of random larger mazes. 
In each such test, we can demonstrate that the program terminates normally, and if 
a path is found, that it passes the self-check, as discussed above.

First, let us count how many mazes there are of any given size. The 4·N walls on 
the perimeter of a maze are required, but each of the N rows of cells has N-1 interior 
vertical wall positions, and each of the N columns of cells has N-1 interior horizontal 
wall positions, each of which is free to be a wall or not. Allowing for the two possi-
bilities in each of those cases means that there are 22·N·(N-1) mazes of size N:

N 22·N·(N-1)

1 20=1

2 24=16

3 212=4,096

4 224=16,777,216

5 290

Based on these numbers, it is feasible to test our program exhaustively on all mazes 
of size up through 4, and not feasible to do so for size 5 and above. We can easily con-
struct an N-by-N maze with interior walls given by the bits of an int parameter w:

/* Create an N-by-N maze with walls given by the bits of w. */
public static void GenerateInput(int N, int w) {
   /* Maze. */
      M = new int[2*N+1][2*N+1];
      lo = 1; hi = 2*N-1;
      /* Set boundary walls. */
         for (int i=0; i<=hi+1; i++)
            M[lo-1][i] = M[hi+1][i] = M[i][lo-1] = M[i][hi+1] = Wall;
      /* Set 2*n*(n-1) interior walls to the corresponding bits of w. */
         for (int r=lo; r<=hi; r++)
            for (int c=lo; c<=hi; c++)
               if ( (r%2==0 && c%2==1)||(r%2==1 && c%2==0) ) { 
                  if ( w%2==1 ) M[r][c] = Wall; else M[r][c] = NoWall;
                  w = w/2;
                  }
   /* Rat. */
      r = lo; c = lo; d = 0;
   /* Path. */
      move = 1; M[r][c] = move;
   } /* GenerateInput */

139. A small flaw is that the cells off a valid path must be Unvisited, and this property is not 
checked by the version of  method  isValidPath presented. Exercise 79 asks you to correct this. 



274 · Running a Maze

We then generate and test all mazes of sizes up through 4-by-4:

/* Generate/solve all mazes of sizes up through N; validate paths found. */
public static void test() {
   for (int N=1; N<=4; N++)
      for (int i=0; i<Math.pow(2,2*N*(N-1)); i++) {
         MRP.GenerateInput(N,i);
         Solve();
         assert MRP.isSolution(): "internal program error";
         }
   System.out.println( "passed" );
   } /* test */

If method test terminates normally, it outputs “passed”; otherwise, something is 
wrong.

For larger N-by-N mazes, we can use a random number generator to create wall 
configurations (represented by integers in the range 0 through 22·N·(N-1)-1 and test 
our solution. However, we won’t get very far because a Java int is limited to 32 bits. 
Note that the solver can easily handle large mazes; it is only the input generator that 
took its wall configurations from the bits of an int. If we really want to follow this 
path, we could switch the representation of wall configurations in the testing code 
to Java’s long or BigInteger integers, and proceed.

JiGeneration and testing of random data, as described, is called fuzz testing.

Complete Program
Because the full program is longish, and the presentation has been fragmented, it is 
reprinted all together in Appendix V Running a Maze.



275

ChAPTER 16  
Creative Representations

The representations illustrated in the text have been mostly straightforward. Typically, 
there has been a direct correspondence between the physical object modeled and 
the programming-language data structure used to model it, e.g., a 2-D maze and a 
2-D array, but this need not be the case. This chapter illustrates that there is room 
for considerable creativity in the choice of computer representations, often to great 
advantage:

☞ The touchstone of a data representation is its utility in performing the 
needed operations.

Tic-Tac-Toe
This example illustrates the potential of a nonstandard program representation based 
on a careful problem analysis to eliminate dreary, brute-force code.

Background. Tic-Tac-Toe, known as Noughts and Crosses in the British Empire, 
is played on a 3-by-3 board consisting of 9 cells. Two players take turns marking cells 
with either an “X” or an “O”. The objective is to obtain 3 of your marks in a row, col-
umn, or one of the two main diagonals.

Problem Statement. Write a program that plays Tic-Tac-Toe.
Representation. The straightforward representation of the state of play is clearly 

a 2-D array of characters, in direct correspondence to the board:

char T[][] = new char[3][3];

The sample array shows an imminent win for “X”, who typically goes first.
A brute-force test for a win by “X” would be odious, requiring an exhaustive check 

for all nine possible winning configurations:

if ( T[0][0]=='X' && T[0][1]=='X' && T[0][2]=='X' ||
     T[1][0]=='X' && T[1][1]=='X' && T[1][2]=='X' ||
     ...
     T[0][0]=='X' && T[1][1]=='X' && T[2][2]=='X' ||
     T[0][2]=='X' && T[1][1]=='X' && T[2][0]=='X' ) // “X” wins.

X O

X O

T 0 1 2

0 X O
1 X O
2



276 · Creative Representations

An initial improvement occurs to us immediately: Change the datatype of elements 
of T from char to int, and represent “X” by +1, “O” by -1, and blank by 0:

int T[][] = new int[3][3];

The sample board T would then be as shown.
The change to integers allows a simplified check for a win by “X” by summing the 

values on the rows, columns, and diagonals:

if ( T[0][0]+T[0][1]+T[0][1]==3 ||
     T[1][0]+T[1][1]+T[1][2]==3 ||
     ...
     T[0][0]+T[1][1]+T[2][2]==3 ||
     T[0][2]+T[1][1]+T[2][0]==3) // “X” wins.

This code is still fairly verbose, but at least we have made an initial creative lurch.
Tic-Tac-Toe is a trivial game, and we certainly have no reason to be concerned 

about the efficiency of our check for a win. But for illustrative purposes, suppose we 
wish to reduce the work performed to check for a win. We can:

☞ Introduce redundant variables in a representation to simplify code, or 
make it more efficient.

An additional variable that counts moves would be helpful:

int movesX = 0; // Number of moves made by “X”.

where movesX would be incremented on each move by “X”. The check for a win 
could then begin with a shortcut:

if ( movesX<3 ) // Not a win for “X”.
else // Win for “X” possible.

We still have to consider the remaining cases of 3, 4, and 5 moves by “X”, but have 
dispatched the cases of 0, 1, and 2 moves handily.

Consider the case of “X” having made 3 moves. Then “X” wins if and only if there 
are three +1s in the same row, column, or diagonal. We have already simplified the 
check for a win by counting moves, and by allowing ourselves to sum up our numer-
ical representation of marks on each row, column, and diagonal individually, but is 
there anything we could sum across all moves by “X”, regardless of where they are, 
that would indicate a win by “X”. Perhaps something magical? Hint. Hint.

Recall the 3-by-3 Magic Square M (p. 128): Each row, column, and diagonal sums 
to 15. Conversely, any three elements of M that are not in the same row, column, or 
diagonal do not sum to 15.

We introduce an additional redundant variable:

int sumX = 0; // Sum of the elements of M corresponding to moves made by “X”.

Each time “X” marks board position ⟨r,c⟩, the following code is executed:

T 0 1 2

0 1 0 -1
1 0 1 -1
2 0 0 0

M 0 1 2

0 8 1 6

1 3 5 7

2 4 9 2



Checkers · 277

T[r][c] = 1;             // Mark T with 1 for “X”.
movesX++;                // Increment count of “X” marks.
sumX = sumX + M[r][c];   // Add the magic value corresponding to ⟨r,c⟩.

The check for a win by “X” is now quite simple:

if ( movesX<3 ) // Not a win for “X”.
else if ( movesX==3 && sumX==15 ) // “X” wins.
else // Win for “X” is still possible, but only in 4 or 5 moves.

Consider the case of “X” having made 4 moves. Suppose “X” wins. Then three of 
its four +1s will appear in the same row, column, or diagonal, and those three will 
contribute 15 to sumX. The fourth “X” will also have contributed some other magic 
value to sumX. In general, that additional value will be between 1 and 9, so the corre-
sponding sumX will be between 16 and 24. Now turn the question around: Suppose 
four distinct integers sum to sumX, and “X” has not marked the cell that corresponds 
to a magic number of sumX-15. Then “X” does not win. Why not? Because the 
fourth move by “X” must be somewhere else, and that place will have contributed 
some different number, say, d, to sumX. But then sumX-d must not sum to 15, and 
so, the remaining three marks cannot be in the same row, column, or diagonal.

To implement these observations, we introduce TT, yet another redundant rep-
resentation of the board. Whereas T is a 2-D array indexed by row and column, TT 
is a 1-D array indexed by magic numbers:

int TT[] = new int[10]; // M[m]==1 iff “X” has marked T[r][c] and M[r][c]==m.

For the position we have been illustrating, the value in TT needs to record that “X” 
is occupying cells that correspond to magic numbers 5 and 8.

The code executed for each move by “X” would now be:

T[r][c] = 1;             // Mark T with 1 for “X”.
TT[M[r][c]] = 1;         // Mark TT with 1 for “X”.
movesX++;                // Increment count of “X” marks.
sumX = sumX + M[r][c];   // Add the magic value corresponding to ⟨r,c⟩.

and the check for a win by “X” in four moves uses the above analysis:

if ( movesX<3 ) // Not a win for “X”.
else if ( movesX==3 && sumX==15 ) // “X” wins.
else if ( movesX==4 && 9<=sumX && sumX<=24 && TT[sumX-15]==1 ) // “X” wins.
else // Win for “X” is still possible, but only in 5 moves.

We shall not finish the code for the case of a win by “X” in five moves because the 
point has been adequately made: Analysis and redundant variables can lead to a com-
pletely novel representation that may simplify code. Of course, “simple” is in the eye 
of the beholder.

Checkers
This example illustrates how constraints and uniformity in a two-dimensional prob-
lem can be leveraged in a beautiful and historic, one-dimensional representation. It 

0 1 2 3 4 5 6 7 8 9
TT 0 0 0 0 0 1 0 0 1 0



278 · Creative Representations

also provides an anecdote that shows that all is not Logic because accident can play 
an important role.

Background. Checkers, known as Draughts in the British Empire, is played by 
moving pieces diagonally on a board that consists of an 8-by-8 two-dimensional grid 
of 64 squares. Initially, each player has twelve pieces, arranged on dark squares, as 
shown. Pieces, known as men,140 can only move to blank squares, diagonally forward 
(up) for black, and diagonally forward (down) for red. Another kind of piece, known 
as a queen, can move diagonally forward and backward. We will not further discuss 
the rules of the game. The salient fact of Checkers for our purpose is that although 
the board has 64 squares, only the dark squares matter. Specifically, because all moves 
are diagonal, fully half the squares (the light ones) are irrelevant.

Problem Statement. Write a program that plays Checkers.
Representation. A straightforward representation of the state of play would be 

a two-dimensional array of int values denoting pieces, in direct correspondence to 
the board. We could choose to encode blank squares as 0, black men (resp., queens) 
as +1 (resp., +2), and red men (resp., queens) as -1 (resp., -2). However, the sparse-
ness of this array, where fully half the array elements are unused, is unappealing.

First, we notice that if the dark squares are numbered from 0 to 31, then the 2-D 
representation can be replaced by a 1-D array with elements indexed by the number 
of the square, 0 to 31, where each element contains one of the same five possible 
values. This would achieve a 50% saving of memory space.

A second space efficiency stems from the observation that there are only five pos-
sible values at each of the 32 squares. Since each int variable has 32 bits, and can 
therefore represent 232 different things, the choice of an int for each square is prof-
ligate. Replacing the one 1-D array of int elements with five 1-D arrays of boolean 
elements, one for each of the five things to be represented, achieves considerable 
savings:141

• Blanks. Initially true in elements 12-19, and false elsewhere.
• BlackMen. Initially true in elements 0-11, and false elsewhere.
• RedMen. Initially true in elements 20-31, and false elsewhere.
• BlackQueens and RedQueens. Initially both all false.

Our representation is getting rather compact.
You may be wondering why we worry about space efficiency given that computer 

memories are so large? The answer lies in the fact that a checkers-playing program 
explores and evaluates many future moves and countermoves: If black were to move 
here, red could move in any of these different ways, and for each of those ways, black 
could reply in these different ways, etc. Depending on the depth of lookahead, the 
number of different boards that might be considered reaches millions, or more.

Spatial efficiency is only one consideration; another is speed:

☞ The touchstone of a data representation is its utility in performing the 
needed operations.

We must consider what operations are needed, and how efficient they are for the 
given representation. One operation is considered here as an example:

140. Apologies. It’s an old game.
141. There are only two boolean values, true and false, so in principle only one bit is required 
for each boolean variable. Whether or not a given programming language implementation 
actually represents each boolean variable efficiently in one bit, or uses 8 or 32 bits, is a sepa-
rate matter. For compactness in the diagrams, we denote true and false as T and F, respectively.

0 -1 0 -1 0 -1 0 -1

-1 0 -1 0 -1 0 -1 0

0 -1 0 -1 0 -1 0 -1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

+1 0 +1 0 +1 0 +1 0

0 +1 0 +1 0 +1 0 +1

+1 0 +1 0 +1 0 +1 0

28 29 30 31

24 25 26 27

20 21 22 23

16 17 18 19

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

0 1-10 11 12-19 20 21-30 31
+1 … +1 0 -1 … -1 Board

Blanks
0 1-10 11 12-19 20 21-30 31
F … F T F … F

BlackMen
0 1-10 11 12-19 20 21-30 31
T … T F F … F

RedMen
0 1-10 11 12-19 20 21-30 31
F … F F T … T



Checkers · 279

/* Compute all target squares of forward-right moves by black men. */

Ideally, we will be able to do this computation uniformly with two of the 1-D 
boolean arrays: BlackMen and Blanks.

Our spirits are lifted when we observe:
• 0 ↦ 4;   1 ↦ 5;   2 ↦ 6;   3 ↦ 7

and realize that in each case the men advance to a square numbered 4 greater. We 
recall the simplicity of the Left-Shift-k operation from Chapter 9 One-Dimensional 
Array Rearrangements, and are excited by the prospect of using its analogue, Right-
Shift-k, to compute all target squares. But alas, on the second row, we observe:

• 4 ↦ 9;   5 ↦ 10;   6 ↦ 11;   7 ↦ 12
i.e., each forward-right diagonal move from the second row advances to a square 
numbered 5 greater. And then the increments alternate, with the third row adding 
by 4, the fourth row adding by 5, etc. Our hopes for uniformity are dashed.

But wait! What if we were to introduce four phantom squares numbered 4, 13, 22, 
and 31, as shown? Check it out! Now, from each square numbered s anywhere on 
the board, the forward-right diagonal square is numbered s+5. Accordingly, if we 
record the location of black men as true in a boolean array of length 36, all squares 
reachable by a forward-right diagonal move by any of them can be computed by a 
single Right-Shift-5, and all squares reachable by a forward-left diagonal move can 
be computed by Right-Shift-4. Similarly, for the red-men, all squares reachable by a 
forward-right (resp., left) diagonal move can be computed by Left-Shift-5 (resp., Left-
Shift-4) of the 1-D array that represents their positions.142

Finally, we must deal with the small issue of moves to phantom squares that incor-
rectly appear legal. But we needed to deal anyway with the question of whether a 
target square is blank or not because only moves to vacant squares are legal. Moves 
to phantom squares can be automatically discarded if elements 4, 13, 22, and 31 of 
Blanks are kept as false. In effect, these values are non-blank sentinels that disal-
low moves to phantom squares.

Thus, for the example of black men, the complete code to compute all legal tar-
gets of forward-right diagonal moves requires just two operations:

• Right-Shift-5 the array BlackMen, which identifies 
as T the squares to which black men could move, 
if only they were unoccupied.

• Perform elementwise logical and of the resulting 
shifted array with Blanks, the array that rep-
resents all blank non-phantom squares.

The figures show the computation of all initial moves by 
black men, and color codes the values as follows: The 
four black men in the front row that can initially move diagonally forward right are 
tracked in the diagrams in green, and the false values that fill elements vacated by 
the Right-Shift-5 are displayed in blue. Legal targets are cells 14, 15, 16, and 17.

Remarkable as this representation is, the story gets even better.
The fundamental unit of data in a computer is called a word: Each machine-lan-

guage instruction manipulates one word at a time. For example, a single instruction’s 
execution can load a word from memory into the Central Processing Unit (CPU), or 

142. The version of shifting needed has one small difference from those of Chapter 9. The k 
elements vacated by the shift are filled with false (rather than remaining as they were), reflec-
tive of the fact that no pieces move onto the board from off it.

32 33 34 35

27 28 29 30 31

23 24 25 26

18 19 20 21 22

14 15 16 17

9 10 11 12 13

5 6 7 8

0 1 2 3 4

0 1 2 3 4 5 6 7 8 9 1011121314151617 … 35
T T T T F T T T T T T T T F F F F F … F

0 1 2 3 4 5 6 7 8 9 1011121314151617 … 35
F F F F F T T T T F T T T T T T T T … F

0 1 2 3 4 5 6 7 8 9 1011121314151617 … 35
F F F F F F F F F F F F F F T T T T … F

0 1 2 3 4 5 6 7 8 9 1011121314151617 … 35
F F F F F F F F F F F F F F T T T T … F

BlackMen

BlackMen
right shifted 5

Blanks

all targets of
forward-right
moves



280 · Creative Representations

add a word to another word, or store a resulting word back into memory. Of special 
interest for our purposes: Shifting the bits of a word left or right k places, and bitwise 
logical and of two words, can each be performed in one instruction.

Think of a word of length n bits as a boolean array of length n. Computers are 
built with enough hardware, i.e., transistors and circuits, to guarantee that each word-
based machine instruction can be performed in one cycle, its smallest unit of time. 
Word-based manipulations are the fundamental units of work in a computer, and 
have maximal efficiency.

A Checkers playing program, written in the mid-1950s by Arthur Samuels, was 
one the earliest examples of Artificial Intelligence and Machine Learning [27]. The 
program was written for the IBM 701 computer, and had access to its efficient word-
based instructions. The word length of the IBM 701 was serendipitously, you guessed 
it, 36 bits. In other words, Samuel’s program could compute all forward-right diago-
nal moves of all black men in 2 machine cycles!143

Eight Queens Problem
This example illustrates the principle of building problem constraints into the rep-
resentation itself.

Background. Chess is played on an 8-by-8 board consisting of 64 squares. 
Queens can move any distance on the same row, column, or diagonal. The Eight 
Queens Problem is whether it is possible to place eight Queens on the board so that 
no two of them are on the same row, column, or diagonal.

Problem Statement. Write a program that prints out a solution to the Eight  
Queens problem as a two-dimensional array, with the positions of the queens 
denoted by “Q” and blank squares denoted by “_”. If there is no solution, print the 
message “not possible”.

Representation. The Eight Queens Problem is a search: We seek a layout of 
eight Queens that satisfies the problem constraints. A straightforward representation 
of the board would be a two-dimensional 8-by-8 array of boolean values, in direct 
correspondence with the physical setup. The declaration would be

boolean B[ ][ ] = new boolean[8][8];

Each array element B[r][c] would denote by true (resp., false) the presence (resp., 
absence) of a Queen in the corresponding board square ⟨r,c⟩. There are 264 different 
such arrays. That’s a very large number [28].

A precept of data representations, especially for search problems, is:

☞ Choose representations that by design do not have nonsensical con-
figurations.

Why do we allow so many manifestly failing configurations in our representation, e.g., 
a board filled with 64 Queens? Why not choose a data structure that only permits 
placement of exactly one Queen in each column? We can do this with a one-dimen-
sional array R of integers, where R[c] is the row number of the Queen in column c:

143. In the 1960s, the conventional word length of computers switched from 36 bits to 32 
bits. Although the 32 squares of a checker board could still be represented in the 32 bits of a 
word, without the 4 extra bits for phantom squares, the appeal for checkers was considerably 
diminished. These days, word lengths of 64 bits are common, so there is room once again for 
phantom squares.

Q



Eight Queens Problem · 281

int R[ ] = new int[8]; // R[c] is row of Queen in column c.

For example, the configuration of queens for the board shown would be represented 
by the one-dimensional array R shown. Although the configuration fails, it is not 
because there is a violation of the rule “No two Queens in the same column”; we 
can’t even represent such a board in R.

But why permit duplicate values in R? Doesn’t a duplicate value indicate two (or 
more) Queens in the same row? For example, the number 1 appears twice in R, indi-
cating two different Queens on row 1 of our sample board.

A permutation of the integers 0, 1, 2, 3, 4, 5, 6, 7 is defined to be a rearrangement 
of those eight integers. If we only consider permutations of those eight values, then 
we will automatically rule out two (or more) Queens in the same row (as well two 
or more Queens in the same column).

It is a well-known fact of combinatorics that the number of permutations of eight 
things is eight factorial, i.e., 8 × 7 × 6 × 5 × 4× 3 × 2 × 1 = 40,320. This is because 
there are 8 choices for the first value, but then only 7 choices for the second value, 
but then only 6 choices for the third value, etc. All we have to do is iterate through 
the up to 40,320 permutations, and stop on finding one that doesn’t represent two 
(or more) Queens on the same diagonal.

The top-level code is quite simple:

/* Solve the Eight Queens problem. */
static void main() {
   /* R[c] is row of Queen in column c for 0≤c<8. */
      int R[] = { 0, 1, 2, 3, 4, 5, 6, 7 };
   /* Consider each permutation of R until the first one is found that 
      represents a solution. (We won’t loop forever, as a solution exists.) */
      while ( hasSameDiagonal(R) ) NextPermutation(R);
   /* Output solution R. */
      ...
   } /* main */

Method NextPermutation(R) advances array R to the next permutation (in some 
enumeration of permutations), and method hasSameDiagonal(R) returns true 
if R represents a configuration of two (or more) Queens in the same diagonal, and 
false otherwise.

To implement hasSameDiagonal, we first create an indexing scheme for the 
diagonals: The positive diagonals can be known by the value of the expression 
row+column, and the negative diagonals can be known by the value of the expres-
sion column-row+7.  

The code for hasSameDiagonal is a search for a Queen (in the list of eight repre-
sented by a permutation) that is on a diagonal (positive or negative) that has occurred 
(in the list of Queens) before. We use two arrays, PosDiag[15] and NegDiag[15], 
to record which diagonals have been seen before:

0 1 2 3 4 5 6 7
R 0 2 4 7 1 3 4 1

0 1 2 3 4 5 6 7

0 Q
1 Q Q
2 Q
3 Q
4 Q
5 Q
6

7 Q

0 1 2 3 4 5 6 7
R 0 2 4 7 1 3 4 1

0 1 2 3 4 5 6 7

0 Q
1 Q Q
2 Q
3 Q
4 Q
5 Q
6

7 Q

Positive diagonal index: row+column

1 2 3 4 5 6 70

8

9

10

11

12

13

14

Negative diagonal index: column-row+7
1 2 3 4 5 6 70

14

13

12

11

10

9

8



282 · Creative Representations

/* Return true iff R has two Queens on same diagonal. */
static boolean hasSameDiagonal( int R[] ) {
   /* PosDiag[k] (resp., NegDiag[k]) true iff a Queen in R[0..c] occurs on
      the positive (resp., negative) diagonal with index k.
      boolean PosDiag[] = new boolean[15]; // Initially false, by default.
      boolean NegDiag[] = new boolean[15]; // Initially false, by default.
   int c = 0;
   while ( c<8 && !PosDiag[R[c]+c] && !NegDiag[c-R[c]+7] ) {
      PosDiag[R[c]+c] = true; NegDiag[c-R[c]+7] = true;
      c++;
      }
   return c!=8;
   } /* hasSameDiagonal */

NextPermutation is rather more difficult, and we will leave it unwritten because 
we have made the main point regarding the data representations. Who would have 
guessed that the crux of the Eight Queens Problem is enumerating permutations?

Ricocheting Bee-Bee
Background. A square tin box measuring one foot on each side has a slit of size 

d centered on one side. Insert a bee-bee gun at the center of the slit, at angle Θ, and 
shoot. The bee-bee ricochets off sides, one after another. On each ricochet, the angle 
of reflection is equal to the angle of incidence.

Problem Statement. Write a program that inputs d and Θ, and outputs the total 
distance the bee-bee travels before it exits.

Representation. The other examples in this chapter concern how to model a 
physical setup in program data structures. In effect, we model an aspect of the world 
in the computer, solve a computer problem, and then map the computer solution 
back to the physical world, announcing: You can perform these steps in the Real 
World with such and such an effect. We discovered creative ways to represent prob-
lems that still permit our computer-simulation results to say meaningful things about 
the original physical setup.

This problem is a bit different: We seek an alternative physical setup, and an anal-
ogous question to ask about it, such that the solution to the second problem informs 
our answer to the first problem. It is the second problem that we will solve in the 
computer. This technique, which is of fundamental importance, is called problem 
reduction, or problem transformation.

What makes the original problem difficult? The fact that with each ricochet, the 
trajectory is a different line segment. If you like to think of lines algebraically, then 
there is a different equation for each segment, say, y=m·x+b, where m is the slope, 
and b is the y intercept. For sure, the slopes alternate between some m (correspond-
ing to the original gun angle Θ) and -m, but the intercepts are all over the map. Are 
we really going to simulate each leg of the trajectory, computing which wall of the 
box it hits, and where it hits it? Let’s hope not.

Uniformity often leads to simplicity.144 In this problem, uniformity would fol-
low if all line segments had the same slope and intercept, i.e., if the trajectory were 

144. For example, introducing four phantom squares in the board for Checkers (p. 279) led 
to uniformity in the numbering of all board squares, which led to the simplicity of being able 
to use a single shift operation to compute all possible forward-right diagonal moves.

d

1’

1’



Ricocheting Bee-Bee · 283

a straight line. We ask: For what similar problem would the trajectory be a straight 
line? In applying the rule:

☞ Consider problem transformation or problem reduction: Solve a differ-
ent problem, and use that solution to solve the original problem.

and searching for an alternative problem to solve, let simplicity be your guiding star: 
In this case, the simplicity of a single straight line.

Focus on the first point of impact. Instead of ricocheting off the wall, we want the 
bee-bee to continue in a straight line. Wouldn’t the bee-bee continue in a straight 
line if the box walls were paper thin? The bee-bee would pass right through the wall, 
and keep going. Similarly, if the bee-bee were a light ray, and the box were made of 
glass rather than tin, the light beam would continue indefinitely in a straight line.145

Now consider the space to the right of the box. What if this space were tessellated 
with images of boxes, with the trajectory continuing straight through all of them. The 
original box, with its ⟨right,bottom,left,top⟩ sides colored ⟨green,purple,blue,orange⟩, 
is the cell in the lower-left of this grid. The next cell to its right can be thought of as 
an image of the box, with the bee-bee traversing it to the opposite (blue) side. And 
the next cell to the right after that is another image of the box, with the bee-bee tra-
versing it to the top (orange) wall. Notice that adjacent cells are mirror images of 
one another, not translations. When the trajectory passes through the top (orange) 
wall, it proceeds into an (upside-down) mirror image of the box, where the bottom 
(purple) wall is oriented above the (orange) wall.

The slits all occur on even (purple) horizontal lines for each and every column of 
cell images. Because the slits are symmetric on the bottom (purple) walls, they remain 
centered in each column despite the mirror imaging.

Let us sum up these observations with the aid of a Cartesian coordinate system 
superimposed on the tessellation, with origin in the middle of the slit, exactly at the 
point where the bee-bee emerges from the gun. The slit images appear on even-num-
bered integer y coordinates. They are centered around each integer x-coordinate k, 
from k-d/2 to k+d/2. We seek the smallest even integer y≥2 such that the straight 
line passes through a slit:

int y = 2;
while ( /* line does not pass through a slit at y */ ) y = y+2;
/* Output the length of the line between ⟨0,0⟩ and ⟨x,y⟩, where x is
   computed from y and theta. */

It’s a simple search! Once the search stops at some y (and corresponding x), the dis-
tance traveled is given by the Pythagorean formula, of course:

/* Return length of hypotenuse of triangle with sides x and y. */
static double Hypotenuse( double x, double y ) {
   return Math.sqrt( x*x + y+y );
} /* Hypotenuse */

The line passes through a slit for a given y if its corresponding x value is less than 
d/2 away from round(x), the integer nearest to x. The unsigned distance between 
x1 and x2 is|x2-x1|, so we ask that |x-round(x)|<d/2. Using x(y,theta), an 

145. Ignoring refraction.

11109876543210

7

6

5

4

3

2

1

0 x

y

round(x)
round(x′)

x′x

d



284 · Creative Representations

as-yet-undefined method for computing x from y and theta, and fully qualifying 
the names abs and round, we obtain the condition:

/* line does not pass through a slit at y */
   Math.abs(x(y,theta)-Math.round(x(y,theta)))>=d/2

and the code:

double d = in.nextDouble();
double theta = in.nextDouble();
int y = 2;
while ( Math.abs(x(y,theta)-Math.round(x(y,theta)))>=d/2 ) y = y+2;
System.out.println( Hypotenuse( x(y,theta),y) );

We need a method for computing x from y and Θ. Assume that input Θ is between 
0 and π radians, and input d is between 0 and 1. To deal with numerical instabilities 
for Θ near π/2, we observe that x can be computed by either dividing y by tan(Θ), 
or by multiplying y by tan(π/2-Θ). The latter approach will be better for Θ between 
π/4 and 3·π/4:

static double x(double y, double theta) {
   if ( theta<Math.PI/4 || theta>3*Math.PI/4 ) 
      return y/Math.tan(theta);
   else return y*Math.tan(Math.PI/2-theta);
   } /* x */

The whole solution is only about a dozen lines long!
Note that we have ignored the boundary condition that the bee-bee hits a cor-

ner of the box exactly, and another boundary condition that the bee-bee nicks the 
edge of a slit. 

☞ Flesh out corner cases that the problem statement omitted, or other-
wise left unspecified.

This is a lacuna in the solution for your further consideration.
We end with two intriguing, and possibly related, questions:
• Does our solution always terminate? Asked differently, is there a 0<d<1, and 

0<Θ<π such that the bee-bee ricochets forever, and never emerges from the 
box?

• In analogy with the problem of Summing Integers from 1 to n, where iteration 
was unnecessary and there was a closed-form solution n·(n+1)/2, might the 
Ricocheting Bee-Bee problem also have a closed form solution in terms of d 
and Θ?

Our analysis has greatly simplified the problem even if no closed-form solution can 
be found.

y

x

x/y = tan(π/2-Θ)
y/x = tan(Θ) π/2-Θ

Θ



285

ChAPTER 17  
Graphs and Depth-First 
Search

This chapter introduces graphs, an abstract mathematical structure, and Depth-First 
Search, an algorithm for enumerating the elements of a graph. Graphs and graph 
algorithms are a higher-level pattern of great utility. When problem analysis reveals 
that your problem can be framed as a graph algorithm, you have the opportunity to 
abstract away from the details of your problem, and apply one of the powerful, gen-
eral-purpose methods that work on graphs.

We have advocated for use of everyday experience and intuition as a source of 
inspiration in programming, but have also advocated for analysis as an integral part 
of the process. Graphs and graph algorithms are an off-the-shelf analysis well worth 
knowing. 

Relations
Let S and T be two sets. A relation between S and T is a set of ordered pairs, ⟨s,t⟩, 
where s is an element of S and t is an element of T. Set T need not be distinct from 
set S, i.e., we can have relations between a set and itself.

For example, let S={Adam, Eve, Cain, Abel}, where color is used only as a visual 
aid. The has-child relation between S and itself is:

{ ⟨Adam,Cain⟩, ⟨Adam,Abel⟩, ⟨Eve,Cain⟩, ⟨Eve,Abel⟩ }.

The pairs of a relation are ordered. For example, the relation:

{ ⟨Cain,Adam⟩, ⟨Abel,Adam⟩, ⟨Cain,Eve⟩, ⟨Abel,Eve⟩ }.

is not at all the same as the has-child relation; it is the has-parent relation.

Graphs
It is convenient to visualize a relation between a set S and itself as a collection of 
nodes and edges. The elements of S are nodes, and an edge from node m to node 



286 · Graphs and Depth-First Search

n represents the existence of the pair ⟨m,n⟩ in the relation. Such a visualization is 
known as a graph.

We can visualize the has-child relation as shown. A graph like this is called a directed 
graph because the edges have direction.

Some relations are symmetric, i.e., if ⟨n,m⟩ is in the relation, then ⟨m,n⟩ is also in 
the relation. For example, the relation has-blood-relative holds between Adam and 
his two children, and vice versa. It also holds between Eve and her two children, and 
vice versa. It does not hold between Adam and Eve. but it does hold between Cain 
and Abel, and vice versa.

 A graph depicting a symmetric relation is called an undirected graph. Rather than 
depicting each directed (i.e., ordered) edge, we omit the arrowheads to signify that 
there are really two underlying ordered pairs for each edge. Thus, the has-blood-rel-
ative relation would be depicted as shown.

Elements of a set that are related to themselves would be depicted in the graph as 
nodes with self-edges. For the purpose of the example, we have not considered each 
person to be his/her own blood relative.

Depth-First Search
Depth-First Search is a process whereby we enumerate all nodes of a graph that are 
reachable from a given node n via a sequence of zero or more edges. It is defined in 
pseudo-code as: 

/* If n was never visited, enumerate it and all its unvisited relatives. */
void DepthFirstSearch(node n) {
   if ( /* n has never been visited */ ) {
      /* Enumerate n. */
      for ( /* each edge ⟨n,m⟩ */ ) DepthFirstSearch(m);
      }
   } /* DepthFirstSearch */

The process is called “depth-first” because each visit to a neighbor m of a node n fin-
ishes all of the visits from m before n goes on to visit its other neighbors.

Let’s apply Depth-First Search to the undirected has-blood-relative graph, above, 
starting with Adam. We signify that Adam has been visited by a black circle. He has 
two blood relatives: Cain and Abel. 

Adam visits Cain, and plans to visit Abel after Cain is done with his visits.
Similarly, Cain has three blood relatives: Eve, Adam, and Abel. Cain visits Eve, 

and plans to visit Adam and Abel when Eve is done with her visits.
Let’s say that Eve visits Abel. Abel has three blood relatives: Adam, Eve, and Cain, 

but when he tries to visit them, he discovers that each has already been visited.146 So, 
Abel is done and returns to Eve so that she can do the rest of her visits. 

The situation at that point is that all her blood relatives have also been visited. 
Thus, Eve is done and returns to Cain, who is also done and returns to Adam, who 
is also done, and so, the enumeration completes. Note that as each person is done 
and returns (say, Abel to Eve), they are backing out of the edge that got them visited 
in the first place (shown in black).

What is Depth-First Search searching for? That depends on what you want. It is 

146. The way we wrote the pseudo-code for Depth-First Search, we actually visit already-vis-
ited nodes, but they return immediately. Such code is equivalent to checking whether a node 
has already been visited before going there.



Running a Maze, Revisited · 287

just an enumeration of all nodes reachable from a given node, and can therefore be 
used to find whether any specific node of interest is reachable. What you do when 
you find it is your business.

Running a Maze, Revisited
We have used the problem of simulating a rat in a maze throughout the text. In 
Chapter 1, it was used to introduce precepts and patterns; in Chapter 4, it provided 
an example of loop invariants and variants; in Chapter 15, it was a rich source of 
data-representation design issues. In the process, we learned much about precise 
programming, and some of its pitfalls. Armed now with the concept of graphs and 
Depth-First Search, we return to the maze problem, and use it to illustrate the power 
of that theory, and the value of abstraction, in general.

Each cell of a maze can be viewed as a node of an undirected graph, where nodes 
n and m have an edge between them precisely when they are adjacent cells of the 
maze with no wall between them.

The rat seeks a path from the node for the upper-left cell (red) to the node for the 
lower-right cell (green). Depth-First Search can be used for exactly this purpose. 

At any given moment, Depth-First Search is visiting some node n in its list of recur-
sive instantiations. If n is a cul-de-sac, it just backs out of the recursion.

Loops, which caused so much consternation and were almost overlooked in 
Chapter 15, are standard fare for Depth-First Search, and are detected on attempt-
ing to visit an already visited node. Thus, Depth-First Search handles with aplomb 
the example:

1 2 5 6
3 4 7
10 9 8

The rightmost image depicts a trace of the rat’s path to each previously-unvisited cell, 
in black. The remaining thin blue edges are to cells discovered to have already been 
visited. The black edges form what is called a spanning tree. The spanning tree shown 
reflects the (arbitrary) order in which the rat chose to visit immediately-neighbor-
ing cells, e.g., it would have been different if the rat had selected a different path out 
of cell 4. However, for the given order chosen, the spanning tree provides a unique 
path from the upper-left cell to every reachable cell in the maze. 

Depth-First Search is not bound to the outer wall (in all of its serpentine forms) 
because it performs a true exhaustive search, if necessary:

1 2 3 4
12 5
11 6
10 9 8 7



288 · Graphs and Depth-First Search

In a sense, you have been “led down the garden path” throughout the text because 
mazes are precisely the sort of problem for which the general framework of this chap-
ter is intended, and we have been withholding.

One may legitimately wonder whether graphs and Depth-First Search are mere 
brute-force technology being applied to the problem, without relevance to rats. 
Is there a way to anthropomorphize the approach (if one can use that term for a 
rodent)? Sure: One must only imagine a rat with a pouch of breadcrumbs, and also 
a way to remember for each cell from where it came. The rat’s algorithm at each cell 
is: If there is already a breadcrumb in the cell, immediately return to the cell from 
which it came. Otherwise, drop a breadcrumb in the cell, visit each neighbor, and 
then return to the cell from which it came, where it resumes visiting all of that cell’s 
neighbors. A clever rat.

Representation. The graph representation of a maze completely abstracts away 
its two-dimensional spatial layout. The maze is just a collection of N·N nodes that are 
adjacent to certain other nodes. The fact that those nodes can be laid out in a 2-D 
grid called a maze is completely omitted and irrelevant. For all we care, the nodes 
could be rooms in a cave connected via secret passages of irregular geometry. Graphs 
represent pure connectivity.

Here is the representation invariant for a maze (as a graph), and a path (as an 
ordered list of graph nodes):

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   /* Maze. Maze cells are represented by N*N nodes of graph G, where G[n]
      is an edge list for node n, i.e., for 0≤e<G[n].length, G[n][e] is an 
      adjacent node m, i.e., a cell m adjacent to n with intervening Wall.
      The upper-left cell is node 0. Cheese is at cheeseNode. */
      private static int G[][];              // Edge lists.
      private static int cheeseNode;         // Node containing cheese.
   /* Path. Array path[0..pathLength-1] is a list of adjacent nodes in
      G reaching from node 0 to some node path[pathlength-1]. */
      private static int path[];
      private static int pathLength;
      public static boolean isAtCheese()
         { return path[pathLength-1]==cheeseNode; }
   ... 
   } /* MRP */

1

A graph is represented by nodes (integers, from 0 to N·N-1), and edges (a two- 
dimensional array G[][]). For each node n, G[n] is a one-dimensional array of the 
nodes m for which there is an edge ⟨n,m⟩. The order of nodes in each G[n] is irrele-
vant, but will influence the order in which Depth-First Search enumerates them.147 

An encoding of our biblical example is shown in the right margin. The nodes in 
path[0..pathLength-1] will be a path from node 0, e.g., Adam.

Solve. To simplify the presentation, we assume that the Input and Output 
routines of Chapter 15 are retained, unchanged. Were we to have adopted the graph 
representation from the get-go, we might not have bothered with the two-dimen-
sional-array representation M[N][N]; we might have gone straight to a graph. But 

147. See the footnote on page 210 for a further discussion of the edge-list vs the adjacen-
cy-matrix representations of a graph in a two-dimensional array.

0 1 2

Eve Abel Adam

Abel 3

Cain 2

Eve 1

Adam 0

0 1

Abel Cain

G

0 1 2

Adam Cain Eve

0 1

Cain Abel



Running a Maze, Revisited · 289

we now leverage that representation, as well as its Input and Output routines. We 
can jettison most of the paraphernalia of the interface that previously supported the 
algorithm, e.g., turning, stepping, and the saving and restoring of information about 
loop-head cells.

Search proceeds as follows:
• Convert the two-dimensional-array representation to a graph.
• Use Depth-First Search to determine a path to the cheese.
• Convert the path back to the two-dimensional-array representation.

Depth-First Search (DFS) is written as a recursive method (red) that terminates as soon 
as it locates the cheese (blue), which it does by throwing an exception that is caught in 
Search.148 We compute the direct path to the cheese in path[0..pathLength-1] 
as a side effect of DFS (green):

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   /* Convert representation M[N][N] to graph G, then perform DFS from
      upper-left, then convert computed path to representation M[N][N]. */
   public static void Search() {
      MakeGraphFromInput();
      try { DFS(0,0); } catch ( RuntimeException e ) {  }
      MakeOutputFromPath();
      } /* Search */
   ...
   } /* MRP */

2

DFS is given a node n from which to explore, and the depth p of the given explora-
tion. It immediately returns if n has been visited before. Otherwise, it extends the 
path to n, and recurses on each node adjacent to n (unless n is the cheeseNode):

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   private static boolean mark[]; // mark[n] iff DFS reached node n.
   /* Depth First Search (DFS) of node n for cheeseNode at depth p. */
   private static void DFS(int n, int p) {
      if ( !mark[n] ) {         // Node n has not been visited before.
         mark[n] = true;        // Mark that n has been visited.
         path[p] = n;           // Extend the path to include n.
         if ( n==cheeseNode ) { // Terminate the search if cheese is found.
            pathLength = p+1;   // Length of path is one longer than p.
            throw new RuntimeException("found cheese");
            }
         for (int e=0; e<G[n].length; e++) DFS(G[n][e], p+1);
         }
      } /* DFS */
   } /* MRP */

3

The code for graphs and Depth-First Search has been placed in class MRP as a 

148.  We used Java’s try-catch exception mechanism in Chapter 15 (p. 235) to localize the 
effect of an input failure due to malformed data. We now use Java’s throw mechanism to termi-
nate DFS (no matter how deep in the recursion) when the cheese is found.



290 · Graphs and Depth-First Search

short-term expedient, but we note that they really should be factored into a class of 
their own. We will not do that here.

MRP.Search is invoked as the implementation of RunMaze.Solve:

/* Rat running. See Chapter 15 and Chapter 17 of text. */
class RunMaze {
   ...
   /* Compute a direct path through the maze, if one exists. */
   private static void Solve() {
      MRP.Search();
      } /* Solve */
   ...
   } /* RunMaze */

4

This completes implementation of maze running as Depth-First Search in a graph. It 
is surprisingly simple. All that remains to implement is the mapping back and forth 
between the Chapter 15 representation of a maze and path, and the graph represen-
tation presented above.

Input and Output. The routines for converting from the two-dimensional 
array representation to the graph representation, and back again, are included here 
for completeness. They are a bit fussy, and are not of great intrinsic interest. High 
on the annoyance level is conversion back and forth between two-dimensional ⟨r,c⟩ 
coordinates, and one-dimensional node-number coordinates whereby the cells of 
a maze are numbered from 0..N*N-1 in row-major order. This would have been 
error-prone even were the two-dimensional system to have been N-by-N, but given 
our use of a (2·N+1)-by-(2·N+1) array M, it is triply so:

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   /* Create undirected graph representation of maze and path. */
   private static void MakeGraphFromInput() {
      G = new int[N*N][];  // Edge lists.
      cheeseNode = N*N-1;  // Node containing cheese.
      path = new int[N*N]; // Path of rat from 0 to cheeseNode, if pos.
      mark = new boolean[N*N]; // mark[n] iff DFS has reached n.
      int n = 0; // Node number.
      for (int r=lo; r<=hi; r=r+2)
         for (int c=lo; c<=hi; c=c+2) {
            G[n] = new int[CountEdges(r, c)]; // Allocate edge list.
            int e = 0; // Edge number.
            for (int d=0; d<4; d++)
               if ( M[r+deltaR[d]][c+deltaC[d]]==NoWall ) {
                  G[n][e] = Node(r+2*deltaR[d], c+2*deltaC[d]);
                  e++;
                  }
            n++;
            }
      } /* MakeGraphFromInput */
   ... 
   } /* MRP */

5

The auxiliary routines CountEdges and Node are:



Running a Maze, Revisited · 291

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   /* Return number of cells adjacent to ⟨r,c⟩ with no Wall between. */
   private static int CountEdges(int r, int c) {
      int e = 0; // Number of edges.
      for (int d=0; d<4; d++)
         if ( M[r+deltaR[d]][c+deltaC[d]]==NoWall ) e++;
      return e;
      } /* CountEdges */

   /* Return node number from ⟨r,c⟩ in M. */
   private static int Node(int r, int c) { return N*(r/2)+(c/2); }
   ... 
   } /* MRP */

6

Copying the path discovered by DFS back into the two-dimensional array M is simple, 
but still involves getting the ⟨r,c⟩ coordinates of nodes right:

/* Maze, Rat, and Path (MRP) Representations. */
class MRP {
   ...
   /* Return ⟨r,c⟩ in M given node n. */
   private static int Row(int n) { return 2*(n/N)+1; }
   private static int Column(int n) { return 2*(n%N)+1; }

   /* Store path[0..pathLength-1] in M. */
   private static void MakeOutputFromPath() {
      for (int q=0; q<pathLength; q++)
         M[Row(path[q])][Column(path[q])] = q+1;
      } /* MakeOutputFromPath */
   ... 
   } /* MRP */

7

Reflection. The consequence of recognizing that one’s problem can be framed 
as a graph, and that Depth-First Search solves the problem, warrants reflection. In 
one fell swoop, all of the previous painstaking and detailed domain-specific analy-
sis are obviated. We only had to establish that the problem at hand can be modeled 
as a relation, and that therefore one universal data-representation (graph) can be 
used. If an off-the-shelf algorithm, e.g., Depth-First Search, addresses your problem, 
you are done.

Depth-First Search imposes no rule on the order in which a node’s neighbors are 
visited, and can be viewed as a framework within which such a discipline can be intro-
duced. As written above, the order is baked in according to the order in which edges 
are listed for each node, but that need not be the case. As long as each neighbor is 
eventually visited, it is Depth-First Search. You are free to invent heuristics that may 
speed the search, including both generic ideas, and domain-specific approaches.

The Knight's Tour of Chapter 14 can be cast as a graph traversal problem, where 
there is an edge between every square of the board and the squares to which a knight 
could move from that square. In this case, however, the problem is not mere reach-
ability from the upper-left node, as in the maze problem. Rather, it is what is called 
a Hamiltonian Circuit, which requires a traversal that visits every node of the graph 
exactly once. The problem of finding a Hamiltonian Circuit for an arbitrary graph is 
computationally very difficult.



292 · Classes and Objects



293

ChAPTER 18  
Classes and Objects

A taxonomy is a system of classification. The concept is fundamental, and is widely 
applicable. The natural world is partitioned into Animal, Vegetable, and Mineral. 
Geometry describes shapes: Polygon, Quadrilateral, Parallelogram, Rhombus, 
Square. Libraries organize their books according to the Dewey Decimal System, or 
Universal Decimal Classification, etc. Taxonomies are an essential mechanism for 
organizing subject matter.

Hierarchical taxonomies in which concepts are organized into tree structures are 
ubiquitous. In a hierarchy, the most general concept is placed at the root of the tree, 
and subordinate concepts branch out from there. 

Taxonomies are not unique. For example, if the root of a hierarchy is Natural 
World, one naturalist may list three subordinate categories: Animal, Vegetable, and 
Mineral, while another may list two: Life and Non-Life, and within Life, list Protista, 
Plantae, and Animalia. We see that not only are the structures not the same, but the 
names assigned to the same groupings may differ.

Each category is a set of individuals, i.e., instances of that category. As such, you 
can depict a taxonomy in a Venn diagram that consists of nested regions, with indi-
viduals denoted by dots:

Natural World

Animal Vegetable Mineral
Ducks
Donald
Daisy

Mice
Mickey

Individuals within the same region share common properties, e.g., Donald and 
Daisy share duck-like properties, and Donald, Daisy, and Mickey share animal-like 
properties. We say that each individual in a given category inherits the properties of 
all categories above them in the taxonomy, i.e., in the regions of the Venn diagram 
that enclose the individual, up to the root. The polygons of Geometry illustrate 
inheritance well: every Square is a Rhombus, which is a Parallelogram, which is a 
Quadrilateral, which is a Polygon.

An object-oriented program organizes a program’s typed values into a hierarchy. 
Each category in the hierarchy is known as a class, and each individual of a category 

Natural World

Animal Vegetable Mineral

Natural World

Life Non- Life

Protista Plantae Animalia



294 · Classes and Objects

is known as an object. The root of the hierarchy is the class Object. Every object is 
an Object.149

We present the notions of class and object in this chapter using an earlier, unfin-
ished problem as a motivating example: Enumeration of Rationals (p. 126). Recall 
that the problem was to list each rational number exactly once, e.g., after 1/2 has 
been listed, we must not subsequently list 2/4, 3/6, etc.

As a running example in this chapter, we will define classes Pair, Fraction, and 
Rational arranged in the inheritance hierarchy shown, and illustrate how each class 
can define properties specific to itself, while inheriting properties of the classes above 
it in the hierarchy. Thus, for example, a Rational is a Fraction that is reduced, i.e., 
one whose numerator and denominator have no common factors. A Fraction is a 
Pair of integers n and d that displays as n/d. A Pair is an Object consisting of two 
integers, k and v, that displays as <k,v>.

With the notion of Rational in hand, we will turn to the issue of eliminating 
duplicates from our enumeration of rationals. To record which values have already 
been output, we use the idea of a collection, as presented in Chapter 12. There, we 
had shown various ways to represent a collection of int values. Now that we can 
treat a rational as a value, we will see that collections of int can readily be general-
ized to collections of any type of object, e.g., values of type Rational.

Recall that one way to represent a collection of int values used an int array A, int 
variables size and maxSize, and satisfied the following representation invariant:

/* A[0..size-1] are the current items in A[0..maxSize-1], 0≤size≤maxSize. */
   int A[];      // receptacle for items in a list.
   int size;     // current # of elements in list, 0≤size≤maxSize.
   int maxSize;  // maximum # of elements storable in the list.

A limitation of Chapter 12 was that there was no way to group such variables, and 
treat them as one thing, i.e., a collection. The second half of this chapter implements 
class ArrayList, which binds up this representation, and the ways to manipulate it, 
all in one place. This packaging allows the whole collection to be treated as a value, i.e., 
as an object of type ArrayList. The example motivates the introduction of numer-
ous additional technical details about classes and objects, and provides a mechanism 
for completing the Enumeration of Rationals problem.

Up until this point, the text has relied only on the universal program-
ming- language features that are summarized in Chapter 2. We now introduce 
classes and objects, but do not attempt to cover the material in a comprehensive 
fashion. Rather, we present just enough to wrap up loose ends, give a taste of object- 
oriented programming, and provide a foundation for your further programming. 
Most importantly, you will learn enough about object-oriented programming to be 
able to read and understand a library specification, and use it.150

149. A more general version of object orientation organizes objects into a taxonomy that is 
not necessarily a hierarchy, i.e., the objects of a class may inherit properties from more than 
one parent class. Such a programming language, e.g., C++, is said to support multiple inheritance. 
150. In contrast with the programming notation used in the book up until now, which is essen-
tially universal, the specific syntax introduced in this chapter is unmistakably Java. Although 
the many object-oriented notions presented here are commonplace, and have their analogues 
in other languages, the notation and terminology used for these notions in other languages 
may differ.

Object

Pair

Fraction

Rational



Essential Notions · 295

Essential Notions
A class is a collection of variable declarations and method definitions. Until now, 
classes have only been used to aggregate such declarations and definitions, and to 
control code complexity: A class is a scope that can be used to restrict visibility of 
variables and methods, and to hide implementation details. As such, the concept of 
class has been used for abstraction, encapsulation, information hiding, and the divi-
sion of code into clients and servers.

The essential aspect of a class that has been avoided until now is its use as a tem-
plate for the dynamic creation of objects. By restricting examples to variables and 
values of type int and boolean, and arrays thereof, we have been able limit the 
conceptual prerequisites needed for the text, and have thereby been able to focus on 
programming principles rather than language features. Although arrays and Strings 
are actually objects, we have limited our remarks related to that fact, but it is now 
time to confront the notion of object frontally.151

An object is a dynamic instantiation of the variables (and methods) of a class whose 
declarations (and definitions) are not prefixed by the modifier static. Such vari-
ables are known as object fields or instance variables (and such methods are known 
as instance methods).

Think of a class as a cookie cutter that can be used to make cookies (objects) of a 
given shape (non-static fields and methods). To stamp out a new cookie, we eval-
uate the expression “new class-name(…)”. 

In contrast with non-static variables and methods, those prefixed with static 
are associated with the class as a whole, and not with each object. Thus, there is 
precisely one instance of a static variable or method regardless of the number of 
objects of the class that exist.

If C is a class, a variable v of type C is obtained by executing the declaration:

C v;

The only difference between such a declaration and (say) “int v;” is the type of the 
variable so declared, and the default value that is used to initialize it. For an int, the 
default value is 0; for a variable whose type is a class, the default value is null, which 
is no object at all.

Suppose class C contains declarations for non-static variables field1, field2,… 
and definitions for non-static methods method1, method2,…. If variable v has 
been declared to have type C, and has been assigned a value of type C, then we depict 
the situation diagrammatically by the figure shown. The object itself is not shoe-
horned into variable v as its value. Rather, what is stored in v is a reference to the 

151. The appearances of objects in the text have been limited to these:
• In Chapter 2, we introduced, without comment, several locutions that involve objects:

 – Initialization of the variable in as a Scanner object, i.e.,
Scanner in = new Scanner(System.in);

 – Use of methods of the Scanner object in for input, e.g., 
int n = in.nextInt();

 – Creation of array objects, e.g.,
int A[] = new int[10];

• In Chapter 7, Chapter 12, and Chapter 17, we used the length field of an array object.
• In Chapter 12, we revealed that an array is actually a reference to a sequence of variables 

in order to be able to replace that sequence with one twice as long. We also alluded to 
the need for collections of ⟨key,value⟩ pairs, and provided a forward reference to this 
chapter. Our depiction a hash table foreshadowed objects, but without comment. 

• In Chapter 14 and Chapter 15, we invoked a String’s substr method.

C
field1
field2
...

method1
method2
...

v



296 · Classes and Objects

object, which itself is shown as freestanding. Each object is depicted in three parts: 
its type, its instance variables, and its instance methods. The reference to the object 
is depicted as a red dot (•), with an arrow emanating from it that points to the object. 
Think of the dot as the value itself, and the arrow as an explanation of what the value 
refers to.

The fields and methods of an object are not limited to ones that are declared or 
defined just in class C. Rather, they include the fields and methods of all classes from 
which class C inherits, i.e., the fields and methods of all classes in the class hierarchy 
along the path from C up to Object. This mechanism is how a more specific category 
of object accumulates all of the attributes of the more general categories that sub-
sume it. However, inheritance is not only a matter of accretion; it allows for method 
specialization, as well. In particular, if the same method name appears in multiple 
classes in the inheritance hierarchy along the path from C up to Object, the defini-
tion lowest in the hierarchy prevails. The mechanism is called method overriding.152

The fields and methods of an object are accessed in code via a reference, where 
the reference-valued expression and field-or-method name are separated by a dot, 
e.g., v.fieldi or v.methodi(…). 

The distinguished value null is a reference to no object. If variable v contains the 
value null, evaluating the expression v.fieldi (or invoking v.methodi(…)) results 
in a runtime “null-pointer” exception, which terminates execution.

Pair
We wish to manipulate pairs of integers with the same ease as we do individual int 
values. We can do so by defining a class Pair that contains two int fields (key and 
value), two methods (getKey and getValue), and one constructor (Pair):153

class Pair {
   protected int key;
   protected int value;
   /* Constructor. */
      public Pair(int k, int v) { key = k; value = v; }
   /* Access. */
      public int getKey()   { return key; }
      public int getValue() { return value; }
   } /* Pair */

P1

The fields and methods in this definition are not static, and therefore are instan-
tiated for each and every individual instance of a Pair.154

152. In practice, we only list relevant fields and methods in an object depiction because there 
are too many to be exhaustive.
153. The names key and value could have been chosen to be anything, e.g., first and 
second, but are adopted here in alignment with a standard class of Java. The names key and 
value derive from use of Pair to represent items in a table that implements a function map-
ping keys to values.
154. Some occurrences of type int are colored blue in the text for future reference. Specifically, 
we plan to generalize Pair to be pairs of values of types other than int. It will be convenient to 
have color-coded these instances of int now so they can be easily identified later for replace-
ment.



Pair · 297

Object Creation
The keyword new in an expression indicates that we wish to create a new instance 
of an object of a given class. The class is signified by a constructor, which is a distin-
guished kind of method with the same name as the class name.

The constructor is automatically invoked on the newly-created object, and pro-
vides a way to reinitialize the object’s fields. In general, a class can have multiple 
constructors, which allows for alternative ways in which to initialize the object. In 
the present case, we have defined only the obvious constructor for Pair, one that 
has two parameters, one for each of the two components of the pair.

Suppose we wish to create an object for ⟨2,3⟩, as shown at the right. We do 
this by evaluating the expression 

new Pair(2,3)

which:
• Dynamically creates a new object of type Pair. The object has two int fields, 
key and value, that are initialized with zero, the default value for type int.

• The constructor (method) of this newly-created object is then invoked with 
int arguments 2 and 3. The constructor assigns 2 and 3 into the respective 
key and value fields of the object on whose behalf it was invoked, overwrit-
ing the zeros.

• The value of the expression “new Pair(2,3)” is a reference to the object, i.e., 
the red dot.

What can one do with such a value? For starters, if you declare a variable to have type 
Pair, you can initialize it with that value, e.g.,

Pair v = new Pair(2,3);

Visibility and Modifiability
In support of information-hiding principles, a class can control its client’s ability to 
see and modify the values of fields, and to invoke methods. It does so using field 
and method modifiers, and by providing access to certain methods, but not other 
methods.

You are already familiar with modifiers public and private from Chapter 15: A 
private field or method is invisible and inaccessible to clients, whereas a public 
field or method is visible and accessible. The modifier protected is a mixture of 
the two; it specifies public-like visibility in all classes that are subordinate to Pair 
in the class hierarchy, and private-like invisibility elsewhere. Thus, subordinate 
classes can be granted privileged access to implementation details of a class that are 
denied to general clients.

In Pair, we have declared the two component fields, key and value, to be 
protected. We have done this so that arbitrary clients will not have uncon-
strained access to the fields, but classes below Pair in the inheritance hierarchy 
(like Fraction and Rational, which we will soon define) do.

A getter is a method that returns the value of a field, and a setter is a method that 
changes the value of a field. Providing a getter, but not a setter, for a private or 
protected field renders the field read only for clients that are unable to see the 
field directly.

In Pair, we have defined public getters, getKey and getValue, but not 

Pair
key
value

Pair
getKey
getValue

2
3



298 · Classes and Objects

setters. To extract the value of a component of v, you can evaluate the expression 
v.getKey() or v.getValue(). Methods getKey and getValue are executed in 
the context of the specific object on which they are invoked, e.g., in this case, the 
object representing ⟨2,3⟩ that is referred to by the reference contained in the vari-
able named v. The code for getKey and getValue directly accesses fields key and 
value, respectively, without using a dot. Which fields? Those of the object on whose 
behalf the getter was invoked.

In Pair, we wish to provide read access to its fields, but not write access. Said 
another way, we want each Pair to seem immutable to clients of the class. We can 
motivate the immutability requirement by an analogy with int values. Consider 
the many variables of a program that might contain the number 3 at some given 
moment of execution. Now imagine how disconcerting it would be if your program 
could change all such 3s into 4s with a single assignment. Surely, we do not want 
to provide such a nonintuitive mechanism with which to shoot oneself in the foot. 
But indirect access to objects via references provides exactly such a mechanism. 
Specifically, imagine all the variables that might contain a reference to the pair ⟨2,3⟩ 
at a given moment of execution. Some of them may share the same object, and con-
sider it to be an indivisible value. Were it not for immutability, a rogue actor (e.g., 
a careless programmer) might change the ⟨2,3⟩ that each such variable appears to 
contain into ⟨2,4⟩.

The notion of a getter can be used to implement a virtual field, i.e., a field that 
does not explicitly exist, but that can be computed from others. For example, you 
could define the class Triangle, and provide getters for three sides and three angles. 
Exactly which fields are actual and which are virtual would not be knowable.

Overriding Inherited Methods
We have simplified the earlier diagram by ignoring the fact that class Pair extends 
class Object, which defines many default methods for every object—in fact, too 
many to list. The two methods defined in class Object that are of immediate inter-
est are toString and equals. Thus, a more accurate, but still approximate, 
depiction of an object instance of class Pair is as shown.

Representation as a String
Method toString creates a String representation of an object. The default defi-
nition of this method (in Object) is not particularly helpful because it just consists 
of the class name and a unique id number, e.g., “Pair@20293791”. We can override 
this definition with a more-useful definition that is specific to Pair:

class Pair {
   ...
   /* String representation of this. */
   public String toString() { return "<" + key + "," + value + ">"; }
   } /* Pair */

P2

Given this so-called overriding definition of toString, the code:

Pair v = new Pair(2,3);
System.out.println( v );

would emit the line of text shown in the output (A), which is produced, as follows: 

Pair
key
value

toString
equals
Pair
getKey
getValue

2
3

<2,3> A



Pair · 299

• System.out.println requires the String representation of its argument, 
which it obtains by invoking method v.toString.

• Since the value in variable v is an object of type Pair, its conversion to String 
invokes the overriding method for toString that is defined in class Pair.

• To compute the String, the toString method of Pair concatenates five 
String values: “<”, the String representation of key, “,”, the String repre-
sentation of value, and “>”.

• The String representation of an int, e.g., the value of the key or value field 
of the object on whose behalf toString was invoked, is its base-10 represen-
tation, as text.

Identity and Equality
Equality between one int and another, or between one boolean and another, is 
built into the programming language, and can be tested using the infix binary oper-
ators “==” and “!=”. We have been using these operators all along. Similarly, equality 
of two references to objects is also built in, and can use those same operators. But in 
this case, “equal” is a misnomer because the operators really test the identity of two 
referenced objects, not their equality.

You may not be familiar with the distinction between identical and equal, but now 
is the time to understand it. Two things are identical when they are “one and the 
same thing”; two things are equal when (for whatever reason) we wish to treat them 
as being similar (in some respect). Thus, identity is an intrinsic notion that applies to 
any two things, but equality is a notion that can be defined to suit our convenience 
in any given context.

The difference between identity and equality is well-illustrated by remembering 
the distinction between a fraction and a rational number. The fractions 2/3 and 4/6 
are manifestly not identical: They have different numerators, and they have differ-
ent denominators. But as rational numbers, 2/3 and 4/6 are typically considered to 
be equal; we say that 2/3 and 4/6 are two different representations of one and the 
same rational number.

Let us see how the distinction between equal and identical plays out in a program. 
Specifically, consider the code:

Pair z1 = new Pair(2,3);
Pair z2 = new Pair(2,3);
Pair z3 = z1;

Notwithstanding the fact that z1 and z2 both refer to objects that represent the pair 
⟨2,3⟩, the expression “z1==z2” would be false because they are two different objects, 
and are therefore two different references. In contrast, z1 and z3 both contain a ref-
erence to the same object (the one that was created when z1 was created), and thus 
the expression “z1==z3” would be true. Despite the fact that z1 and z2 are distinct, 
nonidentical objects, we want them to be equal.

Equality between two objects is defined by method equals. However, as with 
toString, the default definition of equals given in Object is typically not what 
we want. Specifically, it defines two objects as equal only if they are identical objects, 
which is too strict a notion. We want two pairs ⟨p,q⟩ and ⟨p′,q′⟩ to be equal if and 
only if p is equal to p′, and q is equal to q′. Note that we are defining equality of pairs 
qua pairs, not as rationals.

Rather than taking two arguments, equals is a method of each object that takes 
a second object as its sole argument. Thus, to test whether objects o1 and o2 are 



300 · Classes and Objects

equal, we invoke o1.equals(o2), which returns either true or false. Alternatively, 
because equals should always obey the contract requirement that it be symmetric, 
one could invoke o2.equals(o1).155

We define equals for Pair following a standard pattern for such code:

class Pair {
   ...
   /* Equality. */
      @Override
      public boolean equals(Object q) {
         if (q==null) return false;
         if (q==this) return true;
         if ( !(q instanceof Pair) ) return false;
         Pair qPair = (Pair)q;
         return (key == qPair.key) && (value == qPair.value);
         } /* equals */
   } /* Pair */

P3

@Override. This is an optional but recommended compiler directive that 
requests that the compiler issue an error warning if the following method definition 
does not override a definition of a method in a class higher up in the inheritance hier-
archy, e.g., Object.equals. For example, if we had inadvertently declared parameter 
q to have type Pair, a not uncommon mistake, the compiler would warn that there 
is no such method to be overridden. 

Argument checks. If the argument is the null pointer, it is clearly not equal 
to this, i.e., the object on whose behalf the equals method is running.156 On the 
other hand, if the argument is a reference to this, then it is the very same object, so 
it should be equal.157 Finally, we only wish two objects to be candidates for equality 
if they are both Pair objects, so we use instanceof to require (at runtime) that 
the argument be a Pair. Given that the argument q is indeed a Pair, we can assign 
it to a variable qPair of type Pair. The expression “(Pair)q” is called a cast, and 
is required to allow an Object q to be assigned to a Pair variable qPair. Were q 
not a Pair, the cast would cause a runtime exception, but this will not occur since 
we have been careful to rule out this possibility using instanceof. We then require 
that the respective key and value fields of the two pairs be equal.158

Keys and values. We require the key and value of the object on whose behalf 
equals has been invoked, to be equal to the key and value (respectively) of the 
object that has been provided as an argument to equals.159

155. Note that if o1 is a variable containing null, i.e., o1 doesn’t refer to any object, then it is 
not permissible to invoke o1.equals(o2).
156. null is not a reference to any object, but this is a reference to some object. In partic-
ular, this is a reference to the object on whose behalf equals was invoked, Nothing is not 
equal to something.
157. The standard contract for any implementation of equals requires that two identical 
objects be considered equal.
158. Your doppelganger on Kronos (a different class) may have all the same fields as you; nev-
ertheless, we consider it to not be equal to you. In contrast, if two earthlings (objects from the 
same class) have all equal corresponding fields, then we consider the objects equal.
159. The uses of == here are colored blue because they will have to be replaced later when 
Pair is generalized to be pairs of arbitrary objects.



Fraction · 301

Fraction
A fraction is a pair of integers known as the numerator and denominator. Class 
Fraction can be defined by extending class Pair, which places it immediately 
below Pair in the inheritance hierarchy:

class Fraction extends Pair {
   /* Constructor. */
      public Fraction(int numerator, int denominator) {
         super(numerator, denominator); // Apply the Pair constructor.
         assert denominator!=0: "0 denominator";
         }
   /* Access. */
      public int getNumerator()   { return key; }
      public int getDenominator() { return value; }
   } /* Fraction */

F1

Class Fraction is called a subclass of Pair; conversely, Pair is called the superclass 
of Fraction. The term subtype is synonymous with the term subclass.

The constructor Fraction is implemented using the constructor of the imme-
diate superclass of class Fraction, i.e., Pair. The abbreviation super for this class 
is convenient, but if used, must be the first statement in the body of the constructor 
for a subclass. Execution is terminated with an error message if a client ever attempts 
to construct a fraction with a zero denominator.

Evaluation of the expression “new Fraction(2,3)” creates an object that extends 
the fields declared for a Pair (there are two) with fields that are specific to a 
Fraction (there are none). Similarly, the methods of a Fraction extend those of 
Pair with those of Fraction, which includes getters getNumerator and 
getDenominator, and the constructor Fraction.

Access methods getNumerator and getDenominator are new getters appro-
priately named for Fraction. Although we could have implemented them using 
the getters of Pair (getKey and getValue), the field names key and value are 
directly visible in Fraction because they are protected components of the super-
class Pair, so we just access the fields directly.

 Since every Fraction is a Pair, the default String representation of a Fraction 
with numerator p and denominator q would be <p,q>, i.e., the representation of the 
Fraction as a Pair. However, we override this definition with one that is specific 
to a Fraction:

class Fraction extends Pair {
   ...
   /* String representation of this. */
   public String toString() { return key + "/" + value; }
   } /* Fraction */

F2

Given this definition of toString, the statement:

System.out.println( new Fraction(2,3) );

would output “2/3”, not “<2,3>”.
There is no need to override the definition of equals for Fraction because 

two fractions f and f ′ are equal if and only if they are equal when each is considered 
to be a Pair.

Fraction
key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator

2
3



302 · Classes and Objects

Rational
We implement Rational as an extension of Fraction. The central aspect that dis-
tinguishes a Rational from a Fraction is the notion of equality: Two fractions p/q 
and p′/q′ represent the same rational if and only if p·q′ and p′·q are equal. 

One possibility would be to represent Rational values as unreduced Fraction 
values, but override the definition of equals in Rational to encode the above 
definition.

An alternative approach is called canonicalization, where each rational is given 
a unique representation as a fraction. We can do this by eliminating common fac-
tors in the numerator and denominator as part of the construction of a Rational 
value. If we do this, we do not need to override equals because two rationals will 
be equal precisely when their canonical representations as fractions are equal. We 
adopt this approach, and use the previously-presented Euclid’s Algorithm for gcd 
(p. 80) to do so.

We do, however, override the definition of toString yet again so that a Rational 
value with a denominator of 1, i.e., an integer, is represented as such when con-
verted to a String. If the denominator is not 1, we defer to the toString method 
of Fraction:

class Rational extends Fraction {
   /* Constructor */
   public Rational(int numerator, int denominator) {
      super(numerator, denominator); // Apply the Fraction constructor.
      int g = gcd(numerator, denominator);
      key = numerator/g;
      value = denominator/g;
      }
   /* Euclid’s Algorithm. */
   private static int gcd(int x, int y) {
      while ( x!=y )
         if ( x>y ) x = x-y;
         else y = y-x;
      return x;
      } /* gcd */
   /* String representation of this. */
   public String toString() {
      if ( value==1 ) return key + "";   // this as int
      else return super.toString();      // this as Fraction
      } /* toString */
   } /* Rational */

R1

Subtype Polymorphism and Dynamic Method 
Dispatch
Recall that the general form of an initialized variable declaration is:

type name = expression;

which creates the named variable, associates it with the given type, and initializes it 
with the value of expression. Until now, the type of the value assigned to the variable 
has always been exactly type.



ArrayList · 303

Introduction of the class hierarchy, and the notion of inheritance, allow us to 
now generalize the kinds of values that can be stored in a variable. Specifically, if the 
type of a variable is class c, then the variable is permitted to store a reference to any 
value whose type is exactly c, or whose type is a subclass of class c. This is known as 
subtype polymorphism.

We make this concrete with sample code. Recall the class hierarchy defined above: 
Every Rational is a Fraction, every Fraction is a Pair, and every Pair is an 
Object. The following code declares variable o of type Object, assigns values of 
various compatible types to that variable, and outputs each one.

In each case, the String representation of the contents of variable o is obtained 
by (implicitly) invoking o.toString(), but which specific method definition is 
invoked? The answer is that it depends on the type of the value referred to by o at 
the time of the invocation. This is known as dynamic method dispatch. Although each 
output statement is exactly same, the specific version of method toString that is 
invoked, and therefore the specific formatting, depends on the type of the value, not 
on the type of the variable o:

Object o;
o = new Pair(4,6);     System.out.println( o );
o = new Fraction(4,6); System.out.println( o );
o = new Rational(4,6); System.out.println( o );
o = new Rational(6,3); System.out.println( o );

The four lines of text emitted by the code are shown in the output (B). Polymorphic 
variables and dynamic method dispatch are powerful mechanisms that promote 
code succinctness and reuse.

This completes our implementation of rational numbers. We turn now to the 
implementation of collections of rationals.160

ArrayList
Consider a declaration that creates a one-dimensional array of int variables:

int A[] = new int[expression];

The length of the array is given by the value of the expression when the declaration is 
evaluated. The length is dynamic in the sense that each time the declaration is eval-
uated the length may be different, but is fixed in the sense that once the sequence of 
variables is allocated, that length cannot stretch or shrink.

Chapter 12 introduced the notion of a dynamic collection of values stored in an 
array. We distinguished there between the size of the collection (which may grow 
and shrink over the course of program execution) and the length of the array used 
to contain the collection. 

To deal with the possibility that the size of a collection may grow to exceed the 
length of the array, we revealed that arrays are really references to objects, and then 
used that feature to double the length of the sequence of variables, when necessary. 

We now package these ideas in a class called ArrayList. The correspondence 
between arrays and ArrayList values is summarized in this table:

160. The implementation of Rational is far from complete, but has served its purpose for this 
chapter. The exercises pursue further development: Implementation of the rational arithme-
tic operations, and replacement of int numerators and denominators with arbitrary-precision 
integers.

<4,6>
4/6
2/3
2

B



304 · Classes and Objects

syntax new int[0..size] ArrayList
declaration int A[] = 

   new int[expression];
arrayList A = 
   new arrayList(expression);

expression size A.size()
expression size==0 A.isEmpty()
statement A[expression1] = 

   expression2;
A.set(expression1, expression2)

expression A[expression] A.get(expression)
expression Search A.indexOf(expression)
expression Membership A.contains(expression)
statement Insertion A.add(expression);

A.add(expression, expression);
expression Deletion A.remove(expression)

An array has the benefit of a succinct bracket notation for subscripting, but this 
is abandoned for an ArrayList. Thus, rather than writing A[k], we will have to 
write A.get(k), and rather than writing “A[k]=v”, we must write “A.set(k,v)”. 
In return for this inconvenience, we gain the built-in notion that the capacity of an 
ArrayList doubles in size whenever necessary. We also gain the built-in notion of a 
list to which we can append values, e.g., “A.add(v)”, insert values, e.g., A.add(k,v), 
and within which we can remove values, e.g., A.remove(k).

Here is the class definition, where item-by-item commentary appears in the text 
that follows the code. We continue the practice of coloring instances of int that we 
intend to subsequently replace in blue:

class ArrayList {
   private int A[];     // ArrayList elements are in A[0..size-1].
   private int size;    // The default value is 0.
   /* Utility */
      private void checkBoundExclusive( int k ) { 
         if (k>=size) throw new IndexOutOfBoundsException( "≥size" );
         }
      private void checkBoundInclusive( int k ) { 
         if (k>size) throw new IndexOutOfBoundsException( ">size" );
         }
   /* Constructors. */
      public ArrayList( int m ) {
         if ( m<0 ) throw new IllegalArgumentException();
         A = new int[m];
         }
      public ArrayList() { this( 20 /* DEFAULT_SIZE */ );
  /* Capacity. */
      public void ensureCapacity( int minCapacity) {
         int currentLength = A.length;
         if ( minCapacity > currentLength ) {
            int B[] = new int[Math.max(2*currentLength, minCapacity)];
            for (int k=0; k<size; k++) B[k] = A[k]; 
            A = B;
            }
         }

A1



ArrayList · 305

   /* Size. /
      public int size() { return size; }
      public boolean isEmpty() { return size==0; }
   /* Access. */
      public int get(int k) { 
         checkBoundExclusive(k); 
         return A[k]; 
         }
      public int set(int k, int v) { 
         checkBoundExclusive(k); 
         int old = A[k]; 
         A[k] = v;
         return old;
         }
   /* Insertion / Deletion. */
      public void add(int v) {
         if ( size==A.length ) ensureCapacity( size+1 );
         A[size] = v; size++;
         }
      public void add(int k, int v) {
         checkBoundInclusive(k); 
         if ( size==A.length ) ensureCapacity( size+1 );
         for (int j=size; j>k; j--) A[j] = A[j-1];
         A[k] = v;
         size++;
         }
      public int remove(int k) {
         checkBoundExclusive(k); 
         int old = A[k];
         size--;
         for (int j=k; j<size; j++) A[j] = A[j+1];
         return old;
         }
   /* Membership. */
      public int indexOf(int v) {
         int k = 0; while ( (k<n) && (v!=A[k]) ) k++;
         if ( k==n ) return -1; else return k;
         } 
      public boolean contains(int v) { return indexOf(v)!=-1; }
   } /* ArrayList */

A1*

Fields. The fields A and size are private. The last thing we want is clients 
changing them directly. The representation invariant of the class is that the current 
values in an ArrayList are A[0..size-1].

Utility. Indices for ArrayList values must be between 0 and size-1. The 
check for indices that are too big is performed by checkBoundExclusive and 
checkBoundInclusive; the check for negative indices is relegated to normal sub-
script bound checking. In the exclusive version of the test, element A[size] is not 
in the collection, and therefore an index of size is illegal. In the inclusive version 
of the test, element A[size] is about to become an element of the collection, and 
so, size is a legal index.

Constructors. Two constructors are provided. One has an integer parameter, 
and creates a new ArrayList with that initial capacity. The second has no parameter, 



306 · Classes and Objects

and creates a new list with a default initial capacity. The whole point of the class is 
that the capacities are not fixed, and double as necessary, so these initial values are 
just a matter of efficiency for small lists. The constructor is said to be overloaded 
because it has two definitions. In general, when there is more than one method with 
a given name, the version invoked depends on the number and types of arguments 
at the invocation site. The keyword this in the definition of the second constructor 
invokes the 1-argument constructor on the same object.

Capacity. Method ensureCapacity allows clients to increase a list’s capacity, at 
will. More importantly, it is used internally to double the capacity, when necessary.

Insertion / Deletion. Method add (with one argument) appends a value to the 
end of the list, method add (with two arguments) inserts a value at a given index, 
shifting values to the right to make room, and method remove deletes a value at a 
given index, shifting the following values left to fill the hole. 

Membership. This is implemented with Sequential Search. Because the size of 
the list is not readily available to clients (without invoking a method), it is conve-
nient to adopt the convention that a return value of -1 indicates that indexOf fails 
to find the value sought (rather than the size, which has been our wont for Sequential 
Search throughout the text).

Parametric Polymorphism and Generic 
Classes
Recall our partial implementation of code for enumerating rational numbers in 
Chapter 6 (p. 126). To prevent a given rational from being enumerated more than 
once, we proposed to maintain and consult a set of the reduced fractions that have 
already been output. However, we left the part in blue unimplemented because at 
that time we did not yet have a good mechanism for implementing rationals and 
sets of rationals:

/* Output reduced positive fractions, i.e., positive rationals. */
   /* set reduced = { };  */
   int d = 0;
   while ( true ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         /* Let z be the reduced form of the fraction (r+1)/(c+1). */
            int g = gcd(r+1, c+1);
            /* rational z = ⟨(r+1)/g, (c+1)/g⟩; */
         if ( /* z is not an element of reduced */ ) {
            System.out.println( /* z */ );
            /* reduced = reduced ∪ {z}; */
            }
         r--;
         }
      d++;
      }

E2

Clearly, class Rational can be used to represent a reduced fraction, i.e.,

/* Let z be the reduced form of the fraction (r+1)/(c+1). */

can be implemented by



Parametric Polymorphism and GenericClasses · 307

/* Let z be the reduced form of the fraction (r+1)/(c+1). */
   Rational z = new Rational(r+1, c+1);

ArrayList (as currently defined) can be used to represent a set of integers, but not 
a set of Rational values. It was a useful pedagogical step to first define ArrayList 
as a list of int values, but we must now generalize it.

One possibility would be to modify class ArrayList by replacing each occur-
rence of int by Rational.161 Doing so would yield a version of ArrayList 
specialized for Rational values. But we really don’t want to do such text editing 
for each new kind of ArrayList that ever arises. Rather, we want parametric code 
for ArrayList that can be used for any type of list element we may have in mind. 
What is needed is a generic class definition, which allows a class to be parametric in 
one or more types.

ArrayList<E>
We signify that class ArrayList is a generic class that is parametric in the type 
parameter E by writing:

class ArrayList<E> { ... } /* ArrayList */

We then abstract the body of the class definition with respect to the element type, i.e., 
uniformly replace int with the parameter E. The resulting class is said to be para-
metrically polymorphic, where the type parameter E stands for an arbitrary class, e.g., 
Pair, Rational, or whatever:

class ArrayList<E> {
   private E A[];       // ArrayList elements are in A[0..size-1].
   private int size;    // The default value is 0.
   /* Utility */
      private void checkBoundExclusive( int k ) { 
         if (k>=size) throw new IndexOutOfBoundsException( "≥size" );
         }
      private void checkBoundInclusive( int k ) { 
         if (k>size) throw new IndexOutOfBoundsException( ">size" );
         }
   /* Constructors. */
      public ArrayList( int m ) {
         if ( m<0 ) throw new IllegalArgumentException();
         A = (E[]) new Object[m];
         }
     public ArrayList() { this( 20 /* DEFAULT_SIZE */ ); }
   /* Capacity. */
      public void ensureCapacity( int minCapacity) {
         int currentLength = A.length;
         if ( minCapacity > currentLength ) {
            E B[] = (E[]) new Object[Math.max(2*currentLength, minCapacity)];
            for (int k=0; k<size; k++) B[k] = A[k];
            A = B;
            }
         }

A2

161. As we shall see shortly, “A[k]==v” in indexOf also must be replaced.



308 · Classes and Objects

   /* Size. */
      public int size() { return size; }
      public boolean isEmpty() { return size==0; }
   /* Access. */
      public E get(int k) { 
         checkBoundExclusive(k); 
         return A[k]; 
         }      
      public E set(int k, E v) { 
         checkBoundExclusive(k); 
         E old = A[k]; 
         A[k] = v;
         return old; 
         }
   /* Insertion / Deletion. */
      public void add(E v) {
         if ( size==A.length ) ensureCapacity( size+1 );
         A[size] = v; size++;
         }
      public void add(int k, E v) {
         checkBoundInclusive(k); 
         if ( size==A.length ) ensureCapacity( size+1 );
         for (int j=size; j>k; j--) A[j] = A[j-1];
         A[k] = v; 
         size++;
         }      
      public E remove(int k) {
         checkBoundExclusive(k); 
         E old = A[k];
         size--;
         for (int j=k; j<size; j++) A[j] = A[j+1];
         A[size] = null; // Garbage-collection assist.
         return old;
         }   
   /* Membership. */
      public int indexOf(Object v) {
         int k = 0; while ( (k<n) && !v.equals(A[k]) ) k++;
         if ( k==n ) return -1; else return k;
         } 
      public boolean contains(Object v) { return indexOf(v)!=-1; }
   } /* ArrayList */

A2*

Type Parameter. Type parameter E is set off in angle brackets <> rather than 
parentheses () to highlight the distinction between value and type parameters.

Constructors. Type parameter E may not be used as an array constructor, so the 
array is constructed as an Object[], and is then cast to type E[] for assignment to 
A. The same approach is followed for the array construction in ensureCapacity.

Deletion. We have slipped “A[size]=null;” into the new version of remove. 
The motivation for this change is discussed in section Garbage Collection, below 
(p. 313).

Membership. To support testing membership of an arbitrary class of value v 
in an ArrayList, we have declared parameter v to have type Object, and have 
replaced “v!=A[k]” in method indexOf with “!v.equals(A[k])”.



Parametric Polymorphism and GenericClasses · 309

Instantiating a Generic Class
A variable declaration associates the variable with a particular type. For example, 
the declaration:

int k;

associates variable k with type int. Similarly, because classes are types, the decla-
ration:

Rational r;

associates variable r with type Rational. However, because a generic class is 
not a type, and because ArrayList has now been turned into the generic class 
ArrayList<E>, the following is not a valid declaration:

ArrayList reduced;

Rather, one must obtain a specific type by class instantiation, i.e., by providing spe-
cific classes for class parameters:

ArrayList<Rational> reduced;

In the generic class ArrayList<E>, the declaration:

private E A[];

can be said to associate variable A with the type E[], i.e., a one-dimensional array 
of variables of type E. But this is just a manner of speaking because E is not a type 
per se; it is a type parameter that stands for whatever class will have been pro-
vided for the parameter in a class instantiation. Thus, in the class instantiation 
ArrayList<Rational>, the given declaration of A in the class associates A with the 
type Rational[], i.e., a one-dimensional array of variables of type Rational.

Enumeration of Rationals, continued
We now have enough to complete an implementation of code that enumerates pos-
itive rationals:

/* Output reduced positive fractions, i.e., positive rationals. */
   ArrayList<Rational> reduced = new ArrayList();
   int d = 0;
   while ( true ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         /* Let z be the reduced form of the fraction (r+1)/(c+1). */
            Rational z = new Rational(r+1, c+1);
         if ( !reduced.contains(z) ) {
            System.out.println( z );
            reduced.add(z);
            }
         r--;
         }
      d++;
      }

E3



310 · Classes and Objects

Declaration of reduced. Variable reduced  is declared to have type 
ArrayList<Rational>, an instantiation of generic class ArrayList<E> 
with element type Rational, and is initialized with a newly instantiated 
ArrayList<Rational> object of default size. As a convenience, we are permitted 
to write the constructor invocation as ArrayList(), and the compiler infers that 
we intend the constructor invocation ArrayList<Rational>().

Set insertion. Variable reduced is to be a set of reduced fractions, i.e., Rational. 
Accordingly, we only add z into reduced when it is not already a member of the list. 
We note that an ArrayList, in general, represents a multiset, and it is only by virtue 
our check for non-membership that reduced is a set, i.e., has no duplicate values.

Output. The program produces an unbounded enumeration of rationals, in 
diagonal order, as desired (C). The capacity of reduced doubles without bound, as 
necessary, while the program runs.

Uniformity
Some programming languages, e.g., Python, consider every value to be an object. 
In contrast, other languages, e.g., Java, distinguish between values of primitive type 
(like int and boolean) and objects. The advantage of considering every value to 
be an object is uniformity; the advantage of distinguishing between primitive-type 
values and objects is efficiency. 

Uniformity confers conceptual economy, and avoids needless distinctions, but 
at the cost of efficiency. Whereas a primitive value like 3 fits neatly in the memory 
reserved for an int variable, there is extra overhead associated with objects, which 
must be accessed indirectly via references. 

Java attempts to “have its cake and eat it too”. As you have seen for most of this 
text, a subset of Java supports primitive types, with barely a mention of objects. But 
another subset of Java supports a uniform world of objects. In that part of the language, 
we wish to pair any two objects, not just any two int values. For example, you can 
imagine an application where you would wish to pair two values of type ArrayList. 
Accordingly, we now revise the definition of Pair to be a generic class.

Pair<K,V>
It is quite straightforward to give Pair two type parameters, K for the type of the 
key component, and V for the type of the value component:

class Pair<K, V> {
   protected K key;
   protected V value;
   /* Constructor. */
      public Pair(K k, V v) { key = k; value = v; }
   /* Access. */
      public K getKey()   { return key; }
      public V getValue() { return value; }
   ...
   } /* Pair<K,V> */

P4

Classes provided for K and V in instantiations of Pair(K,V) will have their own 
notions of equals, so the implementation of equals for a Pair must be upgraded 
to use their respective notions of equals:

1
2
1/2
3
1/3
4
3/2
2/3
1/4
5
1/5
6
5/2
4/3
3/4
2/5
1/6
7
5/3
3/5
1/7
etc.

C

⟵ 2/2 omitted

⟵ 4/2, 3/3, and 2/4 omitted

⟵ 6/2 omitted
⟵ 4/4 omitted
⟵ 2/6 omitted



Parametric Polymorphism and GenericClasses · 311

class Pair<K,V> {
   ...
   /* Equality. */
      @Override 
      public boolean equals(Object q) { 
         if (q==null) return false;
         if (q==this) return true;
         if ( !(q instanceof Pair) ) return false;
         Pair qPair = (Pair)q;
         return key.equals(qPair.key) && value.equals(qPair.value);
         } /* equals */
   } /* Pair<K,V> */

P5

We are now in a position to have pairs of arbitrary objects.
But we have a new problem: Values of type int, e.g., the numerator and denomi-

nator of a fraction, are not objects. Now that Pair is a generic class, how can we use 
it to represent a Fraction or a Rational?

Boxed Primitive Values
In the part of Java in which we strive for object uniformity, we now need object ver-
sions of primitive values. In the case of integers, this is provided by the built-in class 
Integer. Objects of type Integer are known as boxed or wrapped integers. They 
are objects that have just one field of type int that contains the value. The Integer 
constructor has an int parameter, which it boxes as an Integer. There are similar 
boxed types for each primitive type, e.g., Boolean for boolean, Double for double, 
etc. This is how primitive values get to play in the uniform world of objects.

We were previously able to complete the program to enumerate rationals using the 
original version of class Rational, which extended class Fraction, which extended 
class Pair, which paired two int values. However, now that Pair has been turned 
into a generic class Pair<K,V>, the implementation of Fraction must be changed. 
Specifically, rather than the original:

class Fraction extends Pair {
   ...
   }

we must now write:

class Fraction extends Pair<Integer,Integer> {
   ...
   } /* Fraction */

F3

That is, we define Fraction to be a subclass of Pair<Integer,Integer>, which 
is an instantiation of the generic class Pair<K,V>. There is no need to update 
Rational similarly because it is defined as a subclass of Fraction.

Given the changed definition of Fraction, the object constructed by the expres-
sion new Rational(4,6) is as shown in the right margin. The key and value 
fields, which are inherited from Pair<Integer,Integer>, are each references to 
Integer objects, i.e., boxed integers. As before, the rational is stored as a reduced 
fraction., e.g., 2/3.

With this change, the program to enumerate rationals compiles and produces 

Rational
key
value

toString
equals
Pair
getKey
getValue
Fraction
getNumerator
getDenominator
Rational

Integer
value

Integer
...

2

Integer
value

Integer
...

3



312 · Classes and Objects

the same output as the previous version. The question an astute reader may ask is: 
Why? In particular, why aren’t there type errors in all the places of the code where 
an Integer is now needed but an int value is provided, and vice versa? This ques-
tion is discussed next.

Auto Boxing and Unboxing
Consider an initialized declaration:

Object o = new Pair(2,3);

Would it still work, or would it now have to be changed? In particular, must the 
arguments to the Pair constructor explicitly box the int values, as in the code:

Object o = new Pair(new Integer(2),new Integer(3));

This obligation would be unfortunate, but it would be even worse if the constructor 
Pair also had to be instantiated, as in:

Object o = new Pair<Integer,Integer>(new Integer(2),new Integer(3));

It is highly desirable that the distinction between boxed and unboxed values be 
minimized, and to that end, the compiler automatically boxes primitive values, as 
necessary. 

In the construction Pair(2,3), two int arguments are passed to a generic 
constructor Pair<K,V>, which expects two argument values of classes K and V 
(respectively). But the type of the first argument, 2, is int, not a class. Accordingly, 
the argument 2 is auto boxed to its object counterpart, i.e., the argument is implic-
itly treated as if it were “new Integer(2)”, and the compiler infers that class 
parameter K is Integer. Similarly, the second argument, 3, is auto boxed, and 
the compiler infers that class parameter V is Integer. Happily, the compiler also 
infers that the generic constructor Pair<K,V> is a constructor of the class instance 
Pair<Integer,Integer>. Accordingly, the sample line of code works fine, as is.

Conversely, here is code that implicitly invokes unboxing:

Pair<Integer,Integer> p = new Pair(2,3);
int v = p.getValue();
System.out.println(v);

Variable p is declared to have the type Pair<Integer,Integer>, i.e., a specific 
instance of the generic class Pair<K,V>. Because the generic method getValue 
is known to return a value of type V, the compiler can infer that the expression 
p.getValue() has type Integer. But the assignment to v requires an int, so the 
compiler can also infer that the value returned by getValue must be auto unboxed. 
Accordingly, the sample code also works fine, as is.

In general, the rules for auto boxing and auto unboxing are subtle and persnick-
ety. We just introduce the concepts here so that you will be aware that it is going on. 
The compiler is your friend, and will warn you when you mess up.



Garbage Collection · 313

Polymorphism
Polymorphism is an essential notion in programming that supports code succinct-
ness and reuse. Our code for Enumerating Rationals illustrates four distinct forms 
of polymorphism, which we recapitulate here:

Subtype polymorphism. We have seen that an object of a given class can also be 
viewed as an instance of each of its superclasses. For example, the object constructed 
by Rational(2,3) can be viewed as a Rational, a Fraction, a Pair, or an 
Object. Similarly, a variable declared to have a given class as its type may contain a 
value of that class, or of any of its subclasses. Dynamic dispatch supports the selec-
tion during program execution of the appropriate code for a method invocation. For 
example, the code that is executed for toString depends on the type of the object, 
e.g., Rational.

Parametric polymorphism. We have seen that a class definition can be abstracted 
with respect to one or more class parameters, resulting in a generic class. For exam-
ple, ArrayList<E> and Pair<K,V>. Just as a class can be viewed as a cookie cutter 
that stamps out objects (i.e., class instances), a generic class can be viewed as a cookie 
cutter that stamps out classes (i.e., generic-class instances). This occurs during com-
pilation, not during program execution. For example, the declaration of program 
variable reduced to have type ArrayList<Rational> illustrated generic-class 
instantiation.

Conversion. Every expression has a type, but the expression may occur in a context 
that expects an expression of a different type. A conversion changes the value provided 
from evaluating the expression into a corresponding value of the type expected by the 
context. Some conversions are implicit, e.g., the boxing of an int, and the unboxing 
of an Integer). Other conversions are explicit, e.g., the cast (Pair)q in the over-
riding definition of equals in class Pair. Another term for conversion is coercion.

Overloading. It is convenient to allow different methods to have the same name, 
and to distinguish between them based on usage. For example, ArrayList<E> has 
two constructors, one with no parameter, and the other with one parameter. It also 
has two add methods, one with one parameter, and the other with two parameters. 
Our client code for enumerating rationals used the ArrayList constructor with no 
parameter, and the add method with one parameter. 

Precise usage rules associated with the different types of polymorphism are 
complicated, subtle, language dependent, and are best studied in the programming 
language’s reference manual.

Garbage Collection
Each instantiated object consumes memory space, which is a limited computer 
resource. Any object that can no longer be accessed can be automatically deleted 
and the memory it consumes reclaimed. This process is called garbage collection, and 
happens beyond your control. The goal of garbage collection is to reduce gratuitous 
memory consumption. 

Garbage collection is safe in the sense that any object your program can conceiv-
ably access will not be collected and deleted. As a consequence, any program variable 
that needlessly holds on to a reference to an object prevents a useless object from 
being reclaimed. While the memory of that one object may be of no great concern, 
the problem is that preserving it entails also preserving all objects that are accessi-
ble via its fields, and so on and so forth, all the way down. 

To make garbage collection maximally effective, therefore, it is useful to follow 



314 · Classes and Objects

a discipline whereby any unneeded object reference is relinquished rather being 
retained. Letting go of an object reference is done automatically when a variable 
containing such a reference goes out of scope. It can be done manually, if necessary, 
by assigning null to such variables, where null is a value that refers to no object. 

When a collection is represented in a list data structure, the values in the array 
suffix A[size..A.length-1] are considered dead. If the list values have primitive 
type, there is no harm in leaving detritus in the suffix because the space is allocated 
anyway, i.e., there is no benefit in zeroing out those elements. But if the list items are 
references to objects, such references will inhibit garbage collection. This is the rea-
son the implementation of the remove method in ArrayList (replicated below) 
contains a line for garbage-collection assist.

The code is a bit subtle, but it is instructive:

public E remove(int k) {
   checkBoundExclusive(k); 
   E old = A[k];
   size--;
   for (int j=k; j<size; j++) A[j] = A[j+1];
   A[size] = null; // Garbage-collection assist.
   return old;
   } /* remove */

The left shift of (blue) values overwrites the (green) value that is being removed from 
the collection at A[k]. It was a reference to some object, and when no further ref-
erences to that object remain anywhere in the program, it will be garbage collected. 
Thus, the value originally at A[k] is of no concern. Rather, it is the (violet) value 
that needs nullification. It was copied by the shift, but the original value remains in 
A[size]. Without nullification, that (violet) reference would prevent collection of 
the object it refers to—if and when the reference to the same object that is currently 
in A[size-1] is ever removed from the collection.

Libraries
A programming language consists of core features, and extensions provided by librar-
ies. Some libraries are so central to a language that they are termed standard, and need 
not be explicitly requested; others are optional, and must be requested by name. A 
standard library is effectively a part of the programming language, and is packaged 
as a library merely as an implementation convenience. 

The standard Java library is called java.lang, and contains numerous essential 
classes, including:

• Object, the root of the class hierarchy. All other classes are subclasses of  this 
class, and inherit methods from it, which they are free to override.

• Math, a class that contains many built-in mathematical functions.
• String, the class for sequences of Unicode characters. A string constant, e.g., 
"Hello World", is a reference to a String object that contains the given 
sequence of characters.

• Integer, Boolean, etc., classes for boxed primitive values.
It would be good to browse this library; you now have the wherewithal to read the 
definitions of the classes it contains. The documentation is all online.

The library java.util contains many useful classes with which you should 

0 k n
A unused

si
ze

0 k n
A unused

si
ze



HashSet · 315

become familiar. The part of the inheritance hierarchy involving ArrayList<E> is 
as shown:

Object

AbstractCollection<E>

AbstractList<E>

ArrayList<E>

AbstractSet<E> AbstractMap<K,V>

HashMap<K,V>HashSet<E>

To access everything contained within this library, you must begin your code with 
the line:

import java.util.*;

The generic class ArrayList<E> in the library is largely as we have defined it in this 
chapter, but with many more methods. In other words, it was totally unnecessary for 
us to have implemented ArrayList. We did so just for pedagogy. The implemen-
tation in the library begins:

public class ArrayList<E> extends AbstractList<E>

which states that ArrayList<E> is not a direct subclass of Object. Rather, it is a 
subclass of AbstractList<E>, which (if you were to look) would be found to be 
an abstract subclass of the abstract class AbstractCollection<E>, which is itself 
a direct subclass of Object.

An abstract class contains field declarations and method definitions that are inher-
ited by its subclasses, but it is not permitted to be instantiated on its own, i.e., there 
are no objects of an abstract class, per se. Rather, its purpose is to factor declarations 
and definitions into groups that are then inherited by any of its non-abstract subclass 
instantiations (unless overridden).

The Java documentation provided by the Oracle corporation, which owns the 
copyright in Java, only provides a class’s interface specification, and not its imple-
mentation [6]. As a client of a library class, the interface is all you really need to care 
about. However, you may wish to study the implementations of various library classes 
as a learning exercise. The Gnu Software Foundation has published open-source ref-
erence implementations of many classes [49].

If you intend to do any serious programming in Java (or any other language, for 
that matter), you should invest time browsing the language’s libraries because you will 
see there many of the concepts you will otherwise find yourself programming. The 
next section walks you through a possible scenario in which you discover a library 
class, and use it to advantage.

HashSet
In reflecting on the program to enumerate rationals, you may feel queasy about the 
cost of using Sequential Search to look up each reduced fraction (using indexOf) to 
see whether it has already been output. As the set reduced grows, more and more 
time is spent in this lookup.

  You recall from Chapter 12 that a collection can be implemented using a hash 
table, which offers vastly better performance than Sequential Search. You also notice 



316 · Classes and Objects

HashMap<K,V> and HashSet<E> in the class hierarchy. Given that we only want a 
set of fractions, not a mapping from keys to values, you select the documentation of 
HashSet<E> to peruse, and see that it fits the bill. You return to the code for enu-
merating rationals, and make a one-line change there:

/* Output reduced fractions, i.e., positive rationals; no repeats. */
   HashSet<Rational> reduced = new HashSet();
   int d = 0;
   while ( true ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         /* Let z be the reduced form of the fraction (r+1)/(c+1). */
            Rational z = new Rational(r+1, c+1); 
         if ( !reduced.contains(z) ) {
            System.out.println( z );
            reduced.add(z);
            }
         r--;
         }
      d++;
      }

E3

By virtue of their common inheritance from AbstractCollection<E>, classes 
ArrayList<E> and HashSet<E> both implement methods contains and add. 
Accordingly, those (blue) lines do not have to be changed in the code for enumer-
ating rationals. Of course, the method definitions are completely different in the 
two classes, which is exactly the point of switching reduced from ArrayList to 
HashSet. But it is a great convenience that the two classes have a common interface 
because it allows us to readily try out alternative datatypes.

HashSet<E> uses whatever hash function is defined for its element type. As a 
rule, if a class has an overriding definition of method equals, it should also be given 
an overriding definition of method hashCode. Returning to class Pair<K,V>, we 
leverage the hashCode functions of types K and V, whatever they happened to be:

class Pair<K,V> {
   ...
   /* HashFunction. */
      @Override
      public int hashCode() {
         return key.hashCode() + value.hashCode();
         } /* hashCode */
   } /* Pair */

P6

The benefit realized by use of HashSets is substantial. To measure and demonstrate 
the computational benefit, we comment out the line: 

System.out.println( z );

whose timing would obscure the cost of maintaining the set reduced. We measure 
performance using the standard timing function System.currentTimeMillis, 
which returns time in milliseconds. We output the elapsed time after every 10,000 
rationals are enumerated, up though the first 100,000 rationals:



HashSet · 317

/* Output reduced fractions, i.e., positive rationals; no repeats. */
public static void timing() {
   HashSet<Rational> reduced = new HashSet();
   long startTime = System.currentTimeMillis();
   int rCount = 0; // # of rationals so far.
   int d = 0;
   while ( rCount<100000 ) {
      int r = d;
      for (int c=0; c<=d; c++) {
         /* Let z be the reduced form of the fraction (r+1)/(c+1). */
            Rational z = new Rational(r+1, c+1); 
         if ( !reduced.contains(z) ) {
            /* System.out.println( z ); */
            reduced.add(z);
            rCount++;
            if ( rCount%10000==0 )
               System.out.println( System.currentTimeMillis()-startTime );
            }
         r--;
         }
      d++;
      }
   } /* timing */

E4

After running this program and collecting the timing data for HashSet (D1), we 
change the type of reduced back to ArrayList and collect the timing data again for 
ArrayList (D2). The comparison reveals the stunning magnitude of the speedup.

This performance data rather dramatically illustrates the benefit of using hash 
tables. More generally, it demonstrates the potential payoff derived from just a little 
browsing in library documentation.

Critique
Recall from Chapter 1 the story of Carl Friedrich Gauss, and how he outsmarted his 
teacher by following the precept:

☞ Analyze first.

Rather than adding the integers from 1 to 100, Carl took a hint from the precept:

☞ Sometimes iteration is unnecessary because a closed-form solution is 
available.

He derived the formula for the sum of the first n integers, n·(n+1)/2, plugged in 
100 for n, and announced the answer: 5050. 

We vowed to emulate Gauss. 
For Running a Maze, we worked diligently in Chapter 4 to find a good loop 

invariant for the exploration, and in Chapter 15 were careful to choose good data 
representations for the maze and path, and to encapsulate them in a class. Many valu-
able principles were illustrated in the process. But in Chapter 17, all the problem’s 
complexity miraculously disappeared when the notions of graphs and Depth-First 

23
50
135
220
308
372
463
550
644
750

D1 72
257
574
1035
1601
3206
5602
9236
14290
19711

D2



318 · Classes and Objects

Search were introduced. It turned out that all we needed was to represent the maze as 
a graph, and then apply Depth-First Search. Abstraction and analysis are powerful. 

Where was Gauss when we needed him?
The story for Enumerating Rationals has been similar. In Chapter 6, the need to 

list all fractions motivated diagonal-order enumeration. The requirement to list each 
rational only once led us to invent a data structure for maintaining the set of reduced 
fractions that have already been output.  And the need to represent rationals as val-
ues motivated objects. Then, we learned that the Java library contains multiple ways 
to represent sets of objects, including ArrayList and HashSet. Finally, we demon-
strated the dramatic speed advantage of HashSet over ArrayList. But our analysis 
fell short. Specifically, we (deliberately) overlooked the fact that a set was not needed 
at all because there is a closed-form way to test whether a fraction is reduced:

Fraction n/d, for n≥0 and d>0, is reduced if and only if GCD(n, d) is 1.

Accordingly, we could have chosen to list a fraction only if it is a reduced fraction, 
using the above test for the purpose. Specifically, in the code of movie frame E4 
(highlighted in blue), we can replace the set-membership test with the GCD test:

if ( Rational.gcd(r+1,c+1)==1 /* !reduced.contains(z) */ )

comment out the two lines that are specific to the HashSet reduced:

// HashSet<Rational> reduced = new HashSet();

and

// reduced.add(z);

and rerun the timing experiment. The results are decisive: 2, 5, 8, 11, 14, 16, 18, 20, 
23, and 27 milliseconds. Although HashSet is much faster than ArrayList, com-
puting GCD is much faster than maintaining a HashSet.162

Don’t use brute force just because the computer is a brute:20

☞ Analyze first.

Iterators
In this chapter, we implemented many but not all the methods provided by the library 
version of ArrayList. We demonstrated the power of having a uniform interface to 
the different kinds of collection by showing how a one-line change to our solution 

162. For completeness, there are two technical issues to mention. First, we use method 
Rational.gcd, but it was declared there as private; we assume this has been changed to 
public. Second, the new version is logically different from the first two versions. They displayed 
the reduced form of a fraction n/d when n/d first arises in the diagonal-order enumeration of 
fractions, and thereafter omit all fractions n′/d′ that have that reduced form. In contrast, the 
new version lists a fraction n/d when it arises, but only if it is reduced. Whether the output is 
the same or not depends on the specifics of the order in which fractions are enumerated. We 
shall not further analyze this question, but note that the timings are comparable because they 
list the same number of rationals, regardless of the order.



Iterators · 319

of the Enumeration of Rationals problem could switch from one implementation 
of a collection (ArrayList) to another (HashSet), reaping an enormous benefit. 
However, we finessed one aspect of a collection that was described in Chapter 12, 
but not mentioned here: The enumeration of a collection’s elements. Specifically, we 
left undiscussed how it is possible to write client code that iterates through the ele-
ments of a collection without introducing a dependence on the data structure used 
to implement the collection. Said another way, we now ask: How can we preserve 
information hiding, but still allow a client to enumerate the collection’s elements?

The answer is provided by an iterator for the collection, i.e., an object i that pro-
vides these two methods:163

• i.hasNext(), which returns a boolean that says whether the iterator can be 
pumped for yet another element of the collection.

• i.next(), which returns a value of the collection. Provided i.hasNext() 
has just returned true, invoking i.next() returns the “next” element of the 
collection, where the order of enumeration is beyond your control. 

Each generic form of collection, e.g., ArrayList<E> or HashSet<E>, must provide 
a method named iterator that constructs an iterator for a collection object.

More formally, let C<E> be a generic subclass of AbstractCollection<E>. 
Let c be an object of an instantiation of C<E> for some specific element type EL. 
Then c is a collection of EL items, where the collection implementation is defined 
by C<E>. The following code pattern can be used to pump collection c for elements 
until there are no more:

Iterator<EL> i = c.iterator();
while ( i.hasNext() ) {
   EL e = i.next();
   /* Process element e. */
   }

This client code is independent of the collection’s implementation, and survives 
changes from one form of collection to another. Of course, the implementation of 
the iterator depends on the collection’s data structure, but this difference is hidden 
from the client.

For a concrete example, suppose in method timing, above, after having enumer-
ated 100,000 rationals and stored them in reduced, you wished to process each in 
some way. Then you could use the following code: 

Iterator<Rational> i = reduced.iterator();
while ( i.hasNext() ) {
   Rational e = i.next();
   /* Process element e. */
   }

This same code would work for both the ArrayList and HashSet versions of the 
program.

163. Suppose the elements of the collection of interest have type EL. Then you can think of 
there being a generic class Iterator<E> that has an instantiation Iterator<EL>, and i is an 
object of that class. Although this is not technically accurate, it is close enough for our purposes.



320 · Debugging



321

ChAPTER 19  
Debugging

To err is human, and despite our best efforts, problems inevitably arise. Rather than 
sweep this possibility under the rug, this chapter faces the issue frontally.

Authors distinguish between errors, mistakes, flaws, and defects, but we shall just 
call them all bugs. Some bugs are overt, and manifest with observable symptoms; 
other bugs are latent, and bite long after you think you have completed a correct 
program.

Bugs usually reveal themselves when the program is executed on some particular 
input, and there is an undesirable effect. Your first sign of the presence of the bug is the 
effect, and from that manifestation, you must debug, i.e., reason backwards to identify 
the cause. In the worst case, there is no effect, and you blithely assume that your code 
is bug-free. The purpose of testing is to make as many bugs apparent as possible. 

The most glaring effect of a bug is when program execution doesn’t terminate 
normally. It may “crash”, i.e., stop prematurely with an error message, or it may fail 
to stop at all. Either way, you know immediately that something is wrong. In the first 
case, the error message usually provides a clue that can be used as a starting point for 
tracking down the problem. In the second case, you need to confirm that the pro-
gram is indeed caught in an “infinite loop”, and figure out why. Two reasons for false 
alarms are: (1) A “performance bug” that makes execution so slow that you falsely 
conclude that the code is stuck in a loop, and (2) the program is waiting for you to 
provide interactive input, which you didn’t notice.

When program execution runs to completion, and produces reasonable looking 
output, it is up to you to confirm that the output is correct. Accordingly, you must:

☞ Validate program output thoroughly.

The symptom of a bug may be overt, e.g., the answer is dead wrong, or subtle, e.g., 
a numerical result seems reasonable, at first glance, but is also dead wrong. Many a 
research paper has been published based on incorrect calculations. Inspect your pro-
gram’s output, and convince yourself that it is correct.

The most overt evidence that your code’s output is bad is that there is no output 
at all, or a whole section of output is missing. You may have forgotten to write the 
needed output statement, which will be immediately apparent on inspection of the 
part of the program you think should have produced the output. But, when the out-
put statement is there, yet failed to produce output, there is a logical error in your 



322 · Debugging

code that prevents program execution from reaching the given output statement. 
You must figure out why.

Debugging is the backwards-reasoning process that seeks to identify the specific 
bug in your code that causes an observed, undesirable effect. Although this chapter 
endeavors to make debugging seem as pleasant as possible, you will notice that it is 
not very pleasant. This should reinforce the admonition first made in Chapter 1:

☞ Avoid debugging like the plague.

But, when the inevitable happens, you need to know how to proceed.

Example Bugs
We illustrate debugging by deliberately introducing bugs into the code of 
Appendix V Running a Maze. For each bug, we run the program on the input maze 
shown in the figure.

Each bug is presented in four sections:
• Mistake
• Observed effect
• Forward trace
• Debugging

A mistake made in the code results in an observed effect, which is explained with the 
aid of a forward trace of execution. This is Act 1 of the play, in which we introduce 

“dramatic irony”, i.e., we learn about the mistake from the beginning, and see its con-
sequences. In Act 2, we take on the role of detective: We don’t know the mistake, 
haven’t seen the forward trace, and are only aware of the observed effect of program 
execution. We then present how debugging starts from the effect, and discovers the 
offending mistake.

The fundamental approach is to selectively instrument code so that it emits increas-
ingly useful, partial forward traces that eventually allow you to pinpoint the bug. 

Bug A
This example illustrates code instrumentation in a simple setting.

Mistake. We have coded isFacingWall incorrectly, writing “>=” rather than 
“==”:

45
46

public static boolean isFacingWall()
  { return M[r+deltaR[d]][c+deltaC[d]]>=Wall; }

Observed Effect. Execution completes normally after emitting the incorrect 
output “Unreachable”.

Forward trace. Recall that Wall is -1 and NoWall is 0. Because the bug in 
isFacingWall causes it to always return true, the rat fails to find a way out of the 
upper-left cell. After three consecutive clockwise turns, it faces left (d=3), at which 
point isAboutToRepeat returns true, and Solve completes. The output routine 
calls isAtCheese, which returns false, so it prints “Unreachable”.

Debugging. To start with, all we know is that the output is wrong. Our first 
thought is that MRP.Input may have failed to establish a correct maze representation 



Example Bugs · 323

in M. To confirm that it worked correctly, we insert a call to PrintMaze immediately 
after the maze is read in:

3
4
5

6

/* Input maze, or reject input as malformed. */
private static void Input() {
   MRP.Input();
   MRP.PrintMaze();
   } /* Input */

We run the program again, and see that input worked fine. 
Since Solve emits no detailed output, we need to instrument it to obtain a for-

ward trace of its actions. For this purpose, we write a general-purpose utility method, 
MRP.PrintState, which emits the parameter string s followed by the r, c, d, and 
move components of the MRP state:164

public static void PrintState(String s) {
   System.out.println(s+": "+r+" "+c+" "+d+" "+move);
   }

A convenient place to invoke PrintState is at the beginning of the loop in Solve 
because this will provide a top-level trace of the algorithm’s execution as it proceeds 
through the maze:

8
9
10

11
12
13
14
15
16

17

/* Compute a direct path through the maze, if one exists. */
private static void Solve() {
   while ( !MRP.isAtCheese() && !MRP.isAboutToRepeat() ) {
      MRP.PrintState("Solve");
      if (MRP.isFacingWall()) MRP.TurnClockwise();
      else if (!MRP.isUnvisited()) Retract();
      else {
         MRP.StepForward();
         MRP.TurnCounterClockwise();
         }
      }
   } /* Solve */

We run the program again, and luck out because the output (A1) is very short. It is 
clear from this trace that line 11 of Solve is repeatedly invoking TurnClockwise, 
and that the rat never moves from the upper-left cell. This can only happen if 
isFacingWall is true in every direction. We have confirmed from the output of 
PrintMaze that there is no wall to the right of the upper-left cell, so the problem 
must be in isFacingWall. Inspection of its code reveals the bug.

This is about as easy as debugging gets: From the observed effect, i.e., the incor-
rect output, and from our first attempt at instrumentation, we were able to converge 
on the bug in short order. 

164. This routine is in complete violation of the principle of information hiding, but it will 
only be used for debugging.

Solve: 1 1 0 1
Solve: 1 1 1 1
Solve: 1 1 2 1
Unreachable

A1



324 · Debugging

Bug B
This example illustrates that code instrumentation can produce vast amounts of diag-
nostic information, but that judicious search in that information may lead  directly 
to information vital to pinpointing a bug.

Mistake. We have coded isAtCheese incorrectly, writing “hi+1” rather than 
“hi”:

51
52

public static boolean isAtCheese()
   { return (r==hi+1)&&(c==hi+1); }

Observed Effect. Execution completes after emitting the incorrect output 
“Unreachable”, the exact same output as in Bug A.

Forward trace. The rat exhaustively explores the maze, not stopping at the 
cheese in the lower-right cell because the bug in isAtCheese causes it to always 
return false. When the rat returns to the upper left, and faces left (d=3), the explo-
ration completes, and the output routine prints “Unreachable”.

Debugging. The observed effect is exactly the same as in Bug A, so we proceed 
in the same manner. However, this time the diagnostic output (B1) reveals an exhaus-
tive maze exploration that blows right by the cheese at ⟨r,c⟩ = ⟨9,9⟩. This is enough 
information to focus our attention on method isAtCheese, which inspection reveals 
why it returned false when the rat entered the lower-right cell. 

The example illustrates that instrumentation can easily produce vast amounts of 
diagnostic output. However, we need not study it in detail because the salient infor-
mation is apparent from the sole fact that the rat reached the cheese at ⟨r,c⟩ = ⟨9,9⟩, 
and didn’t stop.

Bug B was not much more difficult to diagnose than was Bug A.

Bug C
This example illustrates how deductive reasoning based on automatically-produced 
diagnostic error information can be used to find a bug.

Mistake. We have coded TurnCounterClockwise incorrectly, thinking that 
if increment-modulo-4 is (d+1)%4, then by analogy decrement-modulo-4 must be 
(d-1)%4:

37
38

public static void TurnCounterClockwise()
   { d = (d-1)%4; }

Observed Effect. Execution stops with a “subscript out-of-bounds” exception. 
The following diagnostic message is printed:

java.lang.ArrayIndexOutOfBoundsException: Index -1 out of bounds for length 4
   at MRP.isFacingWall(MRP.java:46)
   at RunMaze.Solve(RunMaze.java:11)
   at RunMaze.main(RunMaze.java:41)

The message states that an array of length 4 is being indexed with a subscript of -1. 
The next line states that the exception was triggered in method isFacingWall, at 
line 46 of class MRP:

Solve: 1 1 0 1
Solve: 1 1 1 1
Solve: 1 3 0 2
Solve: 1 3 1 2
Solve: 1 5 0 3
...
Solve: 7 5 2 8
Solve: 9 5 1 9
Solve: 9 7 0 10
Solve: 9 7 1 10
Solve: 9 9 0 11
Solve: 9 9 1 11
Solve: 9 9 2 11
Solve: 9 9 3 11
Solve: 9 7 2 10
...
Solve: 3 1 3 2
Solve: 3 1 0 2
Unreachable

B1



Example Bugs · 325

45
46

public static boolean isFacingWall()
   { return M[r+deltaR[d]][c+deltaC[d]]==Wall; }

The remaining lines are known as the call stack, and list (in reverse call order) the 
method invocations that have not yet returned, i.e., line 41 in main invoked Solve, 
which on line 11 invoked isFacingWall.

Forward trace. Because the (incorrect) expression (d-1)%4  in 
TurnCounterClockwise correctly turns counterclockwise when d is greater than 
0, the bug has no effect until the method is first invoked with direction d equal to 0, 
i.e., facing up. Accordingly, execution proceeds without incident until stepping for-
ward into cell 6, whereupon it turns counterclockwise, which (incorrectly) sets d to 
-1. What happens next? The algorithm of Solve continues, and checks for the pres-
ence or absence of a wall by invoking isFacingWall. This is the moment when d 
is used to index array deltaR, and is out of bounds. 

Debugging. How might a backward analysis proceed from the observed effect? 
The diagnostic output is sufficient to conclude that the proximal cause of the 

problem is likely that the value of d is -1. How so? Because the only arrays men-
tioned on the offending line of code that has been identified by the exception 
(MRP.isFacingWall:46) are M[][], deltaR[], and deltaC[]. Although it is 
conceivable that M has somehow been misallocated, and involves an array of length 4, 
it is far more likely that the array in question is either deltaR[] or deltaC[], both 
of which have a declared length of 4. In both cases, the subscript expression is d.

How might d have gotten the value -1? Inspection of the code reveals five places 
where an assignment to d occurs:

Initialization to 0 (at MRP.Input:109), 
increment-modulo-4 (at MRP.TurnClockwise:35), 
decrement-modulo-4 (at MRP.TurnCounterClockwise:38),
locate the previous cell on the path (at MRP.FacePrevious:78-79)
restore d to face the previous cell on the path (at MPR.RestoreDirection:69)

Considering these in turn, we can readily rule out the first two: The first sets d to 
0, and the second adds to d. The third is plausible as a place where d might have 
been assigned -1. The code made sense when we wrote it, but we are now forced to 
reconsider it. Consulting online documentation for the modulus operator (%), we 
discover our misunderstanding. We are saved from having to consider the final two 
possibilities.

The diagnostic information provided by the runtime exception, together with 
systematic analysis, was sufficient to pinpoint the bug, even without instrumenta-
tion of the code.

Bug D
This example illustrates how debugging sometimes requires an iterative process.

Mistake. We have coded isUnvisited incorrectly, failing to scale the row off-
set by 2:

48
49

public static boolean isUnvisited() 
   { return M[r+deltaR[d]][c+2*deltaC[d]]==Unvisited; }

1 2 3 6
4 5



326 · Debugging

Observed Effect. Execution stops with a “subscript out-of-bounds” exception. 
The following diagnostic message is printed:

java.lang.ArrayIndexOutOfBoundsException: Index 4 out of bounds for length 4
   at MRP.isFacingWall(MRP.java:46)
   at MRP.FacePrevious(MRP.java:79)
   at RunMaze.Retract(RunMaze.java:23)
   at RunMaze.Solve(RunMaze.java:12)
   at RunMaze.main(RunMaze.java:41)

The message states that an array of length 4 is being indexed with a subscript of 4. 
The offending line of code is the same code as for Bug C:

45
46

public static boolean isFacingWall() 
   { return M[r+deltaR[d]][c+deltaC[d]]==Wall; }

However, the call stack is different this time, and indicates that the error occurred in 
the course of retracting the path from a cul-de-sac.

Forward trace. Because the erroneous code for isUnvisited fails to scale the 
row offset by 2, the elements of M that it inspects do not always correspond to a cell 
of the physical maze. Rather, when d is 0 or 2, the code (erroneously) inspects an 
element of M that encodes the presence or absence of a wall of the current cell in the 
given direction. This causes program execution to go haywire.

As the rat proceeds in the forward direction, the algorithm in Solve steps forward 
into any cell that is not blocked by a wall, provided that cell is not on the current path, 
which it determines by invoking the (flawed) method isUnvisited. Such checks 
will work correctly when d=1 or d=3 because, in these cases, the (correct) row incre-
ment is zero, and therefore the missing scaling factor is irrelevant. However, when d=0 
or d=2, isUnvisited will always return true. Why? Because it will (erroneously) 
inspect the very same element of M that isFacingWall just inspected. Since there 
was no wall, isUnvisited will compare NoWall (which is 0) with Unvisited 
(which is 0), and return true.

Thus, the rat makes it all the way to the end of the cul-de-sac at cell 8, at which 
point it (correctly) discovers walls in the right, down, and left directions, but no wall 
in the up direction. It is ready to step forward, but this is the precise moment when 
it is relying on correct execution of isUnvisited to detect the cul-de-sac. However, 
because d=0, the element of M that isUnvisited inspects is the one that encodes 
that there is no wall between cells 8 and 7, not the element that contains the 7. 
Accordingly, the rat blithely steps forward into the upper-right cell, overwriting 7 
with 9, and then turns counterclockwise, facing left (d=3).

You may think that the rat will proceed forward, overwriting the existing path, 
but this is not what happens. Recall that isUnvisited works correctly when d=1 
or d=3. Accordingly, the rat now (correctly)detects cell 6 as already visited, which 
stops its forward momentum. Retract is then invoked to back out of a (supposed) 
cul-de-sac at 9. 

Retract invokes FacePrevious:

77
78
79

80

public static void FacePrevious() {
   d = 0;
   while ( isFacingWall() ||
           M[r+2*deltaR[d]][c+2*deltaC[d]]!=M[r][c]-1 ) d++;
   }

1 2 3 6 7
4 5 8

1 2 3 6 9
4 5 8



Example Bugs · 327

which (correctly) identifies cell 8 as the predecessor of cell 9, and orients the rat fac-
ing down. Retract then invokes StepBackward, which sets the upper-right cell 
to Unvisited, i.e., 0, and moves the rat back into cell 8. 

Once again, Retract invokes FacePrevious, this time to search for the pre-
decessor of cell 8, but none of its neighbors is numbered 7. This is a situation that is 
supposed to never arise. The search runs through all four legal values of d, and then 
invokes isFacingWall with (an illegal value of) d=4. This triggers the “subscript 
out-of-bounds” exception, with the call stack, as shown.

An important general-purpose takeaway from this forward trace is that once a bug 
upsets a carefully-crafted program design, it is possible for “all hell to break loose”, at 
which point anything may happen. 

Debugging. There is an old trope that “Ginger Rogers could do everything Fred 
Astaire could do, backwards … and in heels”. It is plenty difficult to understand the 
forward trace. We now have to find the bug by reasoning backwards without the ben-
efit of having seen the trace in advance (heels optional).

As with Bug C, inspection of the code of isFacingWall leads us to conclude 
that the value of d is 4, which is improper for an array of length 4, i.e., deltaR or 
deltaC. 

We identify the same five places in the code where d can (in principle) be assigned 
a value, but in this case, we know the culprit for sure. How so? The call stack shows that 
at the time of the exception, isFacingWall had been invoked by FacePrevious. 
Since that routine necessarily assigns a new value to d, the problem must be there. 
Its code searches for the direction to the cell from which the rat entered its present 
cell. The loop in FacePrevious invokes isFacingWall on each iteration to avoid 
looking outside the maze. We conclude that the search must have failed to find the 
cell from whence the rat came, which then resulted in d becoming 4. We ask: How 
can this be? Surely, the rat entered cell ⟨r,c⟩ from some cell that must have been num-
bered M[r][c]-1. There was no wall separating it from ⟨r,c⟩ when the rat came from 
there, and so the search in FacePrevious should have found it. We are befuddled.

Note that we are missing critical information: We don’t know where the rat was at 
the moment the exception was raised, i.e., we don’t know ⟨r,c⟩, and we don’t know 
how the rat got there. The idea that the rat actually backed into 8 from 9 is beyond 
our wildest imagination.

In summary, we need to reason backward along the forward trace, but the pro-
gram provided no such trace as it careened toward failure. In fact, it ran silently. What 
is needed now is a critical portion of the forward trace, i.e., a portion that is infor-
mative, and that points to the bug. In general, a complete forward trace from the 
beginning of execution is far too long and too detailed to be helpful. What is needed 
is a goal-directed process that selectively reveals relevant portions of the trace. The 
process is iterative: We intelligently interpret each trace to decide what new portion 
to reveal in the next trace. 

We can tell from the call stack that Retract has been invoked, and has not yet 
returned. However, because the maze has many cul-de-sacs, we don’t know for sure 
whether this invocation of Retract is the first, or whether others may have come 
before. To answer this question, we can instrument Retract:

1 2 3 6 0
4 5 8

1 2 3 6 7
4 5 8



328 · Debugging

19
20

...

/* Unwind abortive exploration. */
private static void Retract() {
   System.out.println("Enter Retract");
   ...
   }

Running the program again reveals that the exception occurs within the very first 
invocation of Retract. We (incorrectly) suspect that this retraction starts from 8, 
and then backs out of 8, 7, and 6, but we don’t know where along this sequence the 
exception occurs. To determine this, we instrument FacePrevious:

77
78

...

public static void FacePrevious() {
   PrintState("FacePrevious");
   ...
   }

and StepBackward:

71
72

...

public static void StepBackward() {
   PrintState("StepBackward");
   ...
   }

where PrintState is the same diagnostic method introduced in Bug A.  Running 
the program again produces useful diagnostic output (D1) before the exception is 
thrown. This output can be paraphrased as:

FacePrevious was invoked with the rat in the upper-right cell (⟨r,c⟩=⟨1,9⟩).
StepBackward was invoked from there with the rat facing down (d=2).
FacePrevious was invoked again with the rat in the cell below the upper-right, i.e., ⟨3,9⟩.

This anomalous output reveals that the order of retraction is not as we had suspected. 
Rather than backing out of 8, the rat is backing into cell 8. At this point, there are 
two mysteries:

• Notwithstanding that we never should have been in the situation of backing 
into 8, we may ask why the program crashes?

• How did we get into this situation?
To answer the first question, we expand PrintState to include an invocation 

of PrintMaze:

public static void PrintState(String s) {
   System.out.println(s+": "+r+" "+c+" "+d+" "+move);
   PrintMaze();
   }

We then rerun the program, and obtain the output (D2), where we show a graph-
ical rather than a textual version of the maze. How do we interpret this output? 

• We can see that the rat reached the upper-right cell, and numbered it 9. We 
have no idea how it got there.

• We can see that the retraction started there, zeroed cell 9, and backed into cell 
8. This makes sense, given where the retraction started.

Enter Retract
FacePrevious: 1 9 3 9
StepBackward: 1 9 2 9
FacePrevious: 3 9 2 8

D1

Enter Retract
FacePrevious: 1 9 3 9

StepBackward: 1 9 2 9

FacePrevious: 3 9 2 8

D2

1 2 3 6 9
4 5 8

1 2 3 6 9
4 5 8

1 2 3 6 0
4 5 8



Example Bugs · 329

• We can see that FacePrevious was invoked from cell 8, and must have been 
searching for a cell numbered 7. We can see that there is no such cell, which 
explains why d became 4, which is why isFacingWall triggered the “subscript 
out-of-bounds” exception.

So, now we understand the tail end of the trace, and why the program crashes. But 
we still have no idea how we got to cell 9, and why.

To get a picture of what happened leading up to the retraction, we decide to instru-
ment StepForward. This could produce more output than we want, so to limit it, 
we condition the diagnostic on move being greater than 6:

40
41

public static void StepForward() {
   if (move>6) PrintState("StepForward");
   ...
   }

Rerunning the program, we obtain the more detailed output (D3). 
How do we interpret this output?
• We can see in the path display that the rat’s trajectory proceeded normally from 

6 to 7, and then from 7 to 8. This is as it should be.
• We can see that the rat failed to stop at 8, and proceeded incorrectly to 9.

Why? Or more specifically, what code should have prevented the rat from doing 
so? 

The program would have been executing the algorithm in Solve, proceeding 
along a forward trajectory:

8
9
10
11
12
13
14
15
16
17

/* Compute a direct path through the maze, if one exists. */
private static void Solve() {
   while ( !MRP.isAtCheese() && !MRP.isAboutToRepeat() )
      if (MRP.isFacingWall()) MRP.TurnClockwise();
      else if (!MRP.isUnvisited()) Retract();
      else {
         MRP.StepForward();
         MRP.TurnCounterClockwise();
         }
   } /* Solve */

The rat would have been in cell 8 facing up (d=0). On seeing no wall (line 11), its 
next step was to detect whether it was about to enter a cell already on the path (line 
12). Why did it fail to invoke Retract? Specifically, why was isUnvisited true 
when the upper-right cell so clearly contains 7? To answer this question, we turn to 
the code, and study it:

48
49

public static boolean isUnvisited()
   { return M[r+deltaR[d]][c+2*deltaC[d]]==Unvisited; }

Ideally, we would spot the problem as soon as we look at this code. But, if we don’t, 
we can print out the values of the subexpressions, one-by-one:

StepForward: 1 9 2 7

StepForward: 3 9 0 8

Enter Retract
FacePrevious: 1 9 3 9

StepBackward: 1 9 2 9

FacePrevious: 3 9 2 8

D3

1 2 3 6 7
4 5

1 2 3 6 7
4 5 8

1 2 3 6 9
4 5 8

1 2 3 6 9
4 5 8

1 2 3 6 0
4 5 8



330 · Debugging

48

49

public static boolean isUnvisited() {
   if (move==8) {
      int rr= r+deltaR[d];
      int cc= c+2*deltaC[d];
      int mm = M[r+deltaR[d]][c+2*deltaC[d]];
      System.out.println("M["+rr+"]["+cc+"] is "+mm);
      }
   return M[r+deltaR[d]][c+2*deltaC[d]]==Unvisited; 
   }

Rerunning the program, this outputs the line: 

M[2][9] is 0

which explains the expression returned by isUnvisited when move=8. Staring 
at this line, the row index “2” should jump out at us as wrong. Cells of the maze are 
indexed at odd row and column subscripts. What is that “2” doing there? Looking 
again at the code, we cannot fail to notice that the row subscript expression is 

“r+deltaR[d]” when it should have been “r+2*deltaR[d]”. 
Correcting this, we run the program one more time, and it works. All we have to 

do now is remove the diagnostic instrumentation, and we are done.

Bug E
This example illustrates looking for a pattern in diagnostic information that reveals 
the cause of an infinite loop.

Mistake. We have coded deltaR incorrectly in the down direction, entering 
the row offset as 0 instead of 1: 

48
49
50
51

// Unit vectors in direction d =          0,     1,    2,    3 
//                                       up, right, down, left 
   private static final int deltaR[] = { -1,     0,    0,    0 };
   private static final int deltaC[] = {  0,     1,    0,   -1 };

Observed Effect. The program runs without producing any output, and with-
out stopping.

Forward trace. If the rat faces down (d=2), both deltaR[d] and deltaC[d] 
will (incorrectly) be 0. Thus, access to M[r+deltaR[d]][c+deltaC[d]], 
e.g., in isFacingWall, will really access M[r][c]. Likewise, access to 
M[r+2*deltaR[d]][c+2*deltaC[d]], e.g., in isUnvisited, will also just 
access M[r][c]. The first time the rat faces down will be in cell 3.

The algorithm in Solve  asks (on line 11) whether the rat is facing a wall by invok-
ing isFacingWall:

45
46

public static boolean isFacingWall()
   { return M[r+deltaR[d]][c+deltaC[d]]==Wall; }

However, rather than inspecting the element of M that contains NoWall, method 
isFacingWall, in effect, inspects M[r][c], which contains 3. Since Wall is 
encoded by -1, which is not equal to 3, isFacingWall returns false, which (ser-
endipitously) is correct. Accordingly, the rat prepares to step forward into the cell 

1 2 3



Example Bugs · 331

below. But before doing so, Solve invokes isUnvisited to make sure the rat is not 
at a cul-de-sac, and about to step into a cell already on the path:

48
49

public static boolean isUnvisited()
   { return M[r+2*deltaR[d]][c+2*deltaC[d]]==Unvisited; }

However, rather than inspecting the value of the cell below, isUnvisited, in effect, 
inspects M[r][c], which contains 3, not Unvisited. Accordingly, the rat (incor-
rectly) believes it would be entering a cell already on the path, and invokes Retract 
to back out of the apparent cul-de-sac:

19
20
21
22
23
24
25
26
27
28

/* Unwind abortive exploration. */
private static void Retract() {
   MRP.RecordNeighborAndDirection();
   while ( !MRP.isAtNeighbor() ) {
      MRP.FacePrevious();
      MRP.StepBackward();
      }
   MRP.RestoreDirection();
   MRP.TurnCounterClockwise();
   } /* Retract */

Retract first invokes RecordNeighborAndDirection to obtain and save the 
neighborNumber of the cell in direction d. But d=2, so “the cell in direction 
d” is (incorrectly) the very cell the rat is in, and neighborNumber is set to 3. 
Next, Retract invokes isAtNeighbor to see whether the unwinding is finished. 
But we are at cell 3, so the loop terminates immediately. Next, Retract invokes 
RestoreDirection, which sets d to 2, which it already was. Next, Retract invokes 
TurnCounterClockwise, which sets d to 1, i.e., once again facing a wall to the right. 
This completes execution of Retract, and control returns to Solve.

We have been in this state before: Method Solve calls TurnClockwise, which 
again turns the rat to face down, and the process repeats. We are caught in an unend-
ing loop.

Debugging. All we know at the beginning is that we are stuck in an infinite loop. 
The first thing we must do is to interrupt execution using whatever command our pro-
gramming environment offers for this. The good news is that we can stop execution; 
the bad news is that we typically have no idea where in the program we stopped it.

As with Bug C and Bug D, we instrument the code to provide diagnostic infor-
mation.  This time, we choose to instrument (with calls to MRP.PrintState) the 
beginning of each time around the Solve loop, and entry to Retract. We quickly 
terminate execution (before too much output accumulates), and inspect the trace 
(E1).

 The pattern in the output is clear: We are forever repeating the three lines shown 
in (E2), which we interpret as follows:

• We can see that the rat is in the cell that would be numbered 3, facing right 
(d=1).

• We can see that the rat turns clockwise so that it faces down (d=2).
• The rat must have seen no wall because it was prepared to step forward, but 

apparently it believed that would renter a cell already on the path, so it called 
Retract.

• The net effect of invoking Retract is to return the rat to facing right (d=1).

Solve: 1 1 0 1
Solve: 1 1 1 1
Solve: 1 3 0 2
Solve: 1 3 1 2
Solve: 1 5 0 3
Solve: 1 5 1 3
Solve: 1 5 2 3
Retract: 1 5 2 3
Solve: 1 5 1 3
Solve: 1 5 2 3
Retract: 1 5 2 3
Solve: 1 5 1 3
Solve: 1 5 2 3
Retract: 1 5 2 3
Etc.

E1

Solve: 1 5 1 3
Solve: 1 5 2 3
Retract: 1 5 2 3

E2



332 · Debugging

This is mysterious, but at least we now know the extent of the infinite loop. We instru-
ment isUnvisited as we did in Bug D, but with output conditioned on move==3 
rather than move==8. Rerunning the program produces output (E3). The diagnos-
tic output from isUnvisited is clearly problematic because it should be checking 
element M[3][5], not element M[1][5]. Inspection of the code of isUnvisited 
shows nothing wrong. The only place to inspect is in the initialization of deltaR:

48
49
50

// Unit vectors in direction d =          0,     1,    2,    3 
//                                       up, right, down, left 
   private static final int deltaR[] = { -1,     0,    0,    0 };

There we spot the 0 instead of 1. Fixing the error, we rerun the program, and obtain 
the correct output.

Bug F
This example illustrates the difficulty of debugging when the effect of a bug is delayed 
until much later in program execution. It introduces the application of Binary Search 
(performed manually) to locate  the bug.

Mistake. The mistake is contrived, but models a common occurrence: A rare 
event in obscure code causes damage that is often benign, but on occasion has 
disastrous effect. We concoct the example by inserting a nonsensical statement in 
FacePrevious:

77
78
79

80

public static void FacePrevious() {
   d = 0;
   while ( isFacingWall() ||
           M[r+2*deltaR[d]][c+2*deltaC[d]]!=M[r][c] 1 ) d++;
   if ( move==9 ) M[r-2][c-3] = Wall;
   }

If the rat is ever backing out of a cell when move is 9, a spurious wall will be inserted 
at a nearby place in the maze. The wall insertion may not be triggered for any test 
cases you devise. In those rare cases when it is, the new wall may not matter: It may 
not eliminate a solution, and even if it does, another solution may be found. The bug 
may never be noticed, but in this case, it is.

Observed Effect. The incorrect output “Unreachable” is printed.
Forward trace. The sample maze happens to have a cul-de-sac at move 9, so 

a spurious wall (shown in red) is introduced, which happens to eliminate the only 
available solution.

Debugging. The observed effect is exactly the same as in Bug A and Bug B, so we 
proceed in the same manner. In Bug A, the diagnostic trace immediately revealed that 
the rat was struck in the upper-left cell. In Bug B, it revealed that the rat reached the 
lower-right cell, but didn’t stop. In this bug, the output shows that rat gets nowhere 
near the cheese. Unfortunately, the step where the rat is blocked by the offending wall 
is buried deep in the trace, and we are not likely to spot it. Furthermore, the offense 
of inserting a fictitious wall was committed at an obscure earlier moment. Making 
matters still worse, the encounter with the fictitious wall was perfectly ordinary, e.g., 
it didn’t cause the program to crash, and execution continued for a long time there-
after. These are the bugs that try men’s souls.

Devising an effective strategy is left as an exercise for the reader. We give one hint. 

Solve: 1 1 0 1
Solve: 1 1 1 1
M[1][3] is 0
Solve: 1 3 0 2
Solve: 1 3 1 2
M[1][5] is 0
Solve: 1 5 0 3
Solve: 1 5 1 3
Solve: 1 5 2 3
M[1][5] is 3 
Retract: 1 5 2 3
Solve: 1 5 1 3
Solve: 1 5 2 3
M[1][5] is 3
Retract: 1 5 2 3
Solve: 1 5 1 3
Solve: 1 5 2 3
M[1][5] is 3 3
Retract: 1 5 2 3
Etc.

E3

1 2 3
4 5

6 7
9 8



Debuggers  · 333

Suppose that by hard work, and some luck, you have spotted the fictitious wall. How 
might you discover how it got there? Answer: Use binary search along the timeline 
from the start of execution to moment when the wall’s presence mattered. Repeatedly 
divide that interval (roughly) in half, checking on each probe for the presence or 
absence of the (spurious) wall, and choosing which half-interval of time to focus on 
next, accordingly. You will eventually converge on the moment when the wall was 
introduced. Lo and behold, it is a nonsensical line of code in FacePrevious. Who 
could have guessed?

Debuggers 
A debugger is a tool designed to 
assist in debugging. The funda-
mental debugging process is the 
same with a debugger, but the 
tool allows you to obtain diag-
nostic information without 
instrumenting the code. In this 
section, we illustrate use of the 
debugger that is built into the 
BlueJ programming environ-
ment [1].

The first step is to arrange to 
seize control of program execu-
tion from within the debugger. 
A breakpoint is a debugger direc-
tive to stop execution whenever 
control reaches a given line of 
code. We can set as many break-
points in a program as we wish, and do so by 
clicking on the left column of the given line. To 
obtain control from the get-go, we set a breakpoint 
on the first executable line of method main. Now, 
when we rerun the program, it stops at that break-
point. The debugger opens an additional window, 
which displays the call stack (referred to as the 
Call Sequence), the values of variables (there are 
none in class RunMaze), and various buttons for 
controlling execution.

 Step directs the debugger to execute the next 
line of code all in one step. This is known as sin-
gle-step execution. The entire call to Input is 
performed, including its call to MRP.Input. Execution then stops at the next line, 
e.g., at the call to Solve. 

If we were to strike Step again, 
the entire invocation of Solve 
would be performed, all in one 
step. Instead, we strike Step Into, 
which directs the debugger to 
execute the current line, but to 
stop on the first line of any 



334 · Debugging

method that is invoked in the process. Thus, we step into method Solve, and stop 
at its first line, as shown.

Let’s assume that we are 
debugging Bug A. Recall that the 
mistake in Bug A causes the rat 
to never leave the upper-left cell. 
We can single-step execute 
Solve by repeatedly striking 
Step. The loop iterates just three 
t i m e s ,  c a l l i n g 
MRP.TurnClockwise each 
time, and then terminates. This brings us to the last line of Solve, from which it is 
about to return. This is sufficient information to see that isFacingWall never 
returned false, and the rat is stuck in the upper-left cell. We can reason from this that 
the bug must be in isFacingWall. Once we inspect its code, we see the bug.

Now let’s imagine that we 
were debugging Bug B rather 
than Bug A. Recall that the mis-
take in Bug B causes the rat to 
not stop when it reaches the 
lower-right cell. In this case, 
single-step execution of Solve 
gets tedious because the rat vis-
its so many cells. To speed things up, we 
set a breakpoint on the invocation of 
MRP.StepForward. We then repeatedly 
strike Continue, which directs execution 
to proceed at full speed, but to stop at any 
breakpoint encountered, e.g., to stop at 
each invocation of MRP.StepForward. 

Suppose we have continued enough 
times to suspect that the rat must be close 
to the lower-right cell. To see where the 
rat is, we strike Step Into, which brings 
us to the first line of StepForward, 
within class MRP. When execution sus-
pends in class MRP, the debugger window 
provides access to its static variables. 
For example, the window might show 
that r=1, c=9, and d=2, so the rat is not 
there yet.

Repeatedly striking Continue from 
here resumes coarse-grained cycling 
around Solve. Whenever we wish, we 
can switch to Step, which gives a more 
fine-grained cycling around Solve.

When we believe that the rat has 
reached the lower-right cell, we can 
strike Step Into at the next invocation 
of isAtCheese, where we can confirm 
in the debug window that r=9 and c=9, 



Defensive Programming · 335

i.e., the rat has indeed reached the cheese. Staring at hi=9 in the debug window, and 
at the code of isAtCheese makes the bug obvious. 

51
52

public static boolean isAtCheese()
   { return (r==hi+1)&&(c==hi+1); }

One more Step confirms that isAtCheese (incorrectly) returns false, and the loop 
fails to terminate, despite the rat’s being at the cheese.

Recall that our first suspicion on encountering Bug A was that the maze M might 
not have been constructed correctly, and our first step was to invoke PrintMaze to 
check. Were we to have wished to inspect M directly in the debugger, we could have 
done so. In the image below, we have clicked on M’s value in the debug window (the 
small red box). Recall that an array is really a reference to an object. In the case of 
the 2-D array M, the object is a sequence of 11 variables (the rows), each of which is 
a reference to an object (a column). The image shows the row array (left), and the 
0th column object, M[0], an array of 11 int variables.

Although it is nice to be able to 
inspect values in this sort of gory 
detail, if necessary, the output pro-
vided by PrintMaze was more 
felicitous. Just because you have 
a debugger doesn’t mean that you 
can’t continue to use lower-tech 
techniques based on instrument-
ing code with print statements. A 
hybrid approach that uses both 
print statements and the debug-
ger is probably best.

Defensive Programming
A program’s code makes assumptions at various places without explicitly checking 
that they hold. The earliest manifestation of a bug is internal: An assumption is vio-
lated. However, such a violation is not immediately observable externally.

In some cases, the violation of an assumption is benign, e.g., a representation 
invariant gets broken, but program execution from that point on does not rely on the 
truth of the full invariant. In other cases, the  program eventually throws a runtime 
exception, or gets caught in an infinite loop, or produces bad output. 

Defensive programming aims to make the violation of assumptions manifest as 
early as possible during program execution. It does so by using assert statements. 
The main places in code at which assumptions can be checked are these:

• For an input statement, the code assumes that the input data will comply with 
its specified format.

• For a statement-level specification of the form:

/* Given precondition, establish postcondition. */
   Implementation

the code assumes that the precondition is true before the first statement of the 
implementation, and the postcondition is true after the last statement of the imple-
mentation.



336 · Debugging

• For a declaration of the form:

declaration // representation invariant

or a declaration of the form:

/* Representation invariant. */
   declarations of related variables

the representation invariant is assumed to hold throughout the scope of the vari-
ables, except prior to initialization, and until completion of the code that seeks 
to reestablish the invariant after an update.

• For a loop of the form:

/* Loop invariant. */
   while ( condition ) statement

or of the form:

/* Loop invariant. */
   for ( init; condition; update ) statement

the loop invariant is assumed to be true before and after each execution of the 
statement.

• For a method definition of the form:

/* Given precondition on input parameters, establish
   postcondition on output parameters, and return value,
   if any. */
Method definition

the definition assumes that the preconditions of input parameters are true on entry 
to the body of the method, and the postconditions of output parameters (as well 
as of its return value, if any) are true just before returning from the method.

• For a method invocation of the form:

name( argument-list )

the code assumes that each input argument value satisfies the precondition of the 
corresponding input parameter, and that each output argument (as well as the 
return value, if any) satisfies the postcondition of the corresponding output param-
eter (or result).

We introduced assert-statements in Chapter 3 Specifications and Implementations 
(p. 49) during the initial discussion of preconditions. While it was logical to have 
done so, it was also premature in the sense that we didn’t have a sufficiently compli-
cated example in hand to have adequately motivated their use.

We illustrate the use of assert now in the program for Running a Maze. Specifically, 
we implement isValid, a boolean method that returns false if it discovers evi-
dence that one of MRP’s representation invariants is not being correctly maintained.

Consider the rat’s representation invariant in class MRP:



Defensive Programming · 337

16
17
18
19

/* Rat. The rat is located in cell M[r][c] facing direction d, where a
   d of ⟨0,1,2,3⟩ represents the orientation ⟨up,right,down,left⟩,
   respectively. */ 
   private static int r, c, d;

We can write a utility method to confirm that this representation invariant holds:

/* Return false iff rat’s representation invariant is violated. */ 
public static boolean isValidRat() {
   if ( r<0 || r>hi || c<0 || c>hi ) return false;
   else if ( d < 0 || d>3 ) return false;
   else if ( M[r][c]!=move ) return false;
   else return true; 
   } /* isValidRat */

Similarly, consider the path’s representation invariant in class MRP:

21
22
23
24
25
26
27

/* Path. When the rat has traveled to cell ⟨r,c⟩ via a given path through
   cells of the maze, the elements of M that correspond to those cells will
   be 1, 2, 3, etc., and all other elements of M that correspond to cells
   of the maze will be Unvisited. The number of the last step in the path
   is move. */
   private static final int Unvisited = 0;
   private static int move;

Routine isValidPath was introduced on page 271 to make our Running a Maze 
program self-checking, but it can be used now to validate maintenance of the path 
invariant.

We put these together in the definition of isValid:

/* Return false on evidence that a representation invariant is violated. */
public static boolean isValid() { 
   return isValidRat() && isValidPath(r,c); 
   } /* isValid */

We can then use this method in assert-statements in various places in the code 
where we wish to confirm that the invariant still holds, e.g., the first statement of 
the loop of Solve: 

8
9
10

11
12
13
14
15
16

17

/* Compute a direct path through the maze, if one exists. */
private static void Solve() {
   while ( !MRP.isAtCheese() && !MRP.isAboutToRepeat() ) {
      assert MRP.isValid(): "Invalid MRP representation.";
      if (MRP.isFacingWall()) MRP.TurnClockwise();
      else if (!MRP.isUnvisited()) Retract();
      else {
         MRP.StepForward();
         MRP.TurnCounterClockwise();
         }
      }
   } /* Solve */



338 · Debugging

If we wish finer-grained validation, we can sprinkle more such assertions elsewhere, 
e.g., as the last statements of various state-altering methods of class MRP such as 
StepForward, TurnClockwise, and TurnCounterClockwise.

As long as there are no bugs, such assertions have no effect (except to slow down 
program execution). If there is a bug that breaks a representation invariant, we get 
an early warning with a helpful diagnostic message. 

For example, if we had checked the representation invariant as shown: 

37
38

public static void TurnCounterClockwise() {
   d = (d-1)%4;
   assert isValid(): "Invalid MRP representation.";
   }

then execution of Bug C would have immediately terminated as soon as d was set to 
-1, with the error message:

java.lang.AssertionError: Invalid MRP representation.
   at MRP.TurnCounterClockwise(MRP.java:39)
   at RunMaze.Solve(RunMaze.java:15)
   at RunMaze.main(RunMaze.java:41)

which would have been so much more helpful than:

java.lang.ArrayIndexOutOfBoundsException: Index -1 out of bounds for length 4
   at MRP.isFacingWall(MRP.java:46)
   at RunMaze.Solve(RunMaze.java:11)
   at RunMaze.main(RunMaze.java:41)

Use of assert-statements is fine while the program is still under development 
because your time is typically more important than the program’s execution speed. 
Once program development is complete, you can eliminate the overhead of the 
runtime validation (in one fell swoop) by directing the compiler to ignore all 
assert-statements. Disabled assert-statements remain in your program text in case 
you need them in the future, but otherwise have no effect.165

165. Note that the default for some programming environments is that assert-statements are 
disabled, in which case you must explicitly enable them if you want them. Asserts are enabled 
in BlueJ by default.



339

About the Author

Tim Teitelbaum is an Emeritus Professor of Computer Science at Cornell University. 
He received his S.B. in Mathematics from M.I.T. in 1964, and his Ph.D. in Computer 
Science from Carnegie Mellon University in 1975. His early research focus was on 
Integrated Development Environments (IDEs), Syntax-Directed Editing, and 
Incremental Computation. His later work was on Automated Program Analysis for 
cybersecurity. 

In 1988, Teitelbaum co-founded GrammaTech, Inc., a program analysis and cyber-
security firm. He retired from Cornell in 2011 to devote full time to the company, 
where he continued to pursue his research interests, and to transition that research 
to commercial products.

Teitelbaum’s teaching focus at Cornell over many years was introducing beginners 
to programming, which he did for more than 9000 students, and for which he received 
numerous teaching awards from the College of Engineering. Upon retirement from 
GrammaTech in 2019, Teitelbaum returned to pedagogy, and wrote this book. 



340 · Acknowledgments



341

Acknowledgments

To thank Tom Reps for having reviewed chapters of this book would be a gross under-
statement. He has been my professional colleague, business partner, and friend since 
June, 1978 when we first met, and his influence on me has been immense. It has been 
a wonderful journey together for which I will always be grateful.

I assumed responsibility for Cornell’s Introduction to Computer Programming 
course in 1975 from David Gries, who had authored the textbook and established 
the principles being taught. I am indebted to him for much of my point of view 
regarding the subject.



342 · Appendix: Precepts



343

APPEnDIx I  
Precepts

Precept Issue #

☞ Follow programming precepts. Overarching A01
☞ Ignore precepts, when appropriate. Overarching A02
☞ Resolve contradictory precepts with care. Overarching A03
☞ Code with deliberation. Be mindful. Overarching A04
☞ Be humble. Programming is hard and error prone. Respect it. Overarching A05

☞ Aspire to coding it right the first time. Do no harm. Avoid writing code that must 
be redone. Overarching A06

☞ Avoid debugging like the plague. Overarching A07
☞ Don’t be wedded to code. Revise and rewrite when you discover a better way. Overarching A08

☞ Leverage features of the programming language and its compiler that protect you 
from mistakes. Overarching A09

☞ Make sure you understand the problem. Overarching A10
☞ Dovetail thinking about code and data. Overarching A11

☞ Confirm your understanding of a programming problem with concrete examples. 
Elaborate the expected input/output mapping explicitly. Preliminaries B01

☞ Flesh out corner cases that the problem statement omitted, or otherwise left unspec-
ified. Preliminaries B02

☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is in 
your “wetware”. Be introspective. Ask yourself: What am I doing? Preliminaries B03

☞ Consider the possibility that your manual approach may be suboptimal, and a differ-
ent approach may be better. Preliminaries B04

☞ Analyze first. You don’t (necessarily) have to use brute force just because the com-
puter is a brute. Preliminaries B05

☞ Sometimes iteration is unnecessary because a closed-form solution is available. Preliminaries B06

☞ Consider problem transformation or problem reduction: Solve a different problem, 
and use that solution to solve the original problem. Preliminaries B07

☞ • An alternative problem may be intrinsically easier. Preliminaries B08

☞ • An alternative problem may be harder, but you happen to have the code available 
for it. Preliminaries B09

☞ Decide between an on-line vs off-line algorithm, e.g., processing data incrementally as 
it is input vs inputting all data, storing it in variables, and processing it thereafter. Preliminaries B10

☞ • Prefer on-line to off-line. Preliminaries B11



344 · Appendix: Precepts

☞ • Anticipate possible future need for an off-line solution before you invest too much 
in an on-line solution. Preliminaries B12

☞ Invent (or learn) vocabulary for concepts that arise in a problem. Preliminaries B13
☞ Invent (or learn) diagrammatic ways to express concepts. Preliminaries B14

☞ Simple examples may be as good (or better) than complicated ones for guiding you 
toward a solution. Preliminaries B15

☞ Program top-down, outside-in. Methodology C01

☞
Use Stepwise Refinement. Write simple code immediately, otherwise refine the prob-
lem statement using: (a) Sequential Refinement, (b) Case Analysis, (c) Iterative 
Refinement, or (d) a known pattern.

Methodology C02

☞ Start by writing a top-level decomposition of the solution. Methodology C03
☞ Specify how individual program steps will cooperate with one another. Methodology C04
☞ • Convey information between refinement steps using one or more variables. Methodology C05
☞ Use the constraints of Stepwise Refinement to guide creativity. Methodology C06

☞ When refining a condition placeholder, establish the operands first, then the rela-
tional operation. Methodology C07

☞ Refine specifications and placeholders in an order that makes sense for development, 
without regard to execution order. Methodology C08

☞ Use indentation under a statement comment to indicate “how” to accomplish “what” 
is demanded by the outdented statement comment above it. Methodology C09

☞ Beware of premature self-satisfaction. Methodology C10
☞ Consider Divide and Conquer when designing an algorithm. Methodology C11
☞ Consider recursion when designing an algorithm. Methodology C12
☞ Consider generalizing a problem when designing an algorithm. Methodology C13
☞ Write comments as an integral part of the coding process, not as afterthoughts. Specification D01

☞
The types of comments include: (a) statement-comments, (b) representation-invari-
ants associated with declarations and loops, (c) header-comments associated with 
methods, (d) header-comments associated with classes, and I descriptions and asides. 
Rarely, (f) an expression comment when an expression is complicated.

Specification D02

☞ (a1) Interpret a statement-comment as executable code. It says exactly what code 
must accomplish, not how it does so. Specification D03

☞ (a2) A statement-comment is written as a statement in a high-level language, i.e., 
English. As such, it is a specification for code not yet written. Specification D04

☞ (a4) A statement-comment is written in terms of program variables, and assumes the 
representation invariants of those variables. Specification D05

☞ (a5) A statement-comment often omits its assumed preconditions, and just states the 
postcondition to be achieved. Specification D06

☞ (a6) A statement-comment should not give any algorithmic details as to how the 
postcondition is achieved. Example: Set y such that y*y==x. Specification D07

☞
(a7) A statement-comment must include all essential details. It is a stand-in for the 
code not yet written, and must be complete so that you can hand-check the correct-
ness of the rest of the program without that code having been written.

Specification D08

☞ (a8) Consider including a brief summary prefix in a statement-comment. Specification D09

☞
(a9) To avoid information overload, statement-comments typically omit (i) perfor-
mance requirements, and (ii) exceptions. But they are important: Many should be 
addressed somehow, while others are handled implicitly, or by global default.

Specification D10

☞ • Performance requirements are often totally ignored. Specification D11
☞ • Integer arithmetic overflow is typically ignored. Specification D12
☞ • The out-of-memory exception is typically ignored. Specification D13
☞ • Ill formed input exceptions are sometimes addressed as part of “defensive coding”. Specification D14



345

☞
(b1) A representation invariant describes the value(s) of one or more program vari-
ables, and their relationships to one another as the program runs. The invariant is 
typically written as a comment associated with the declaration(s) of the relevant 
variable(s).

Specification D15

☞ • Write the representation invariant of a collection of related variables as a comment 
before the declarations of those variables. Specification D16

☞ • Write the representation invariant of an individual variable as an end-of-line com-
ment. Specification D17

☞ (b2) A loop invariant is a local representation-invariant, and can be stated as a header 
comment to the loop. Specification D18

☞
(c1) A method header-comment specifies the effect of invoking it, and (if the method 
has non-void type) the value returned. If the method has parameters, the specifica-
tion is written in terms of those parameters.

Specification D19

☞ (d1) A class header-comment is descriptive, and omits the details of the methods and 
variables of the class. Reference available auxiliary documentation. Specification D20

☞ (e1) Descriptive comments and asides can be helpful, but should not supplant com-
ments of types a-c. Specification D21

☞
(f1) Expression-comments may be useful placeholders during programming, but 
rarely survive refinement, e.g., In the heat of battle, you may write “if(/*n is even*/)...”  
and change it later to “if (n%2==0)...”. 

Specification D22

☞ Repeatedly improve comments by relentless copy editing. Specification D23
☞ • Effort in perfecting comments is repaid later when code practically writes itself. Specification D24

☞
• Embrace succinct notations in comments, e.g., A[lo..hi] or A[lo:hi] for a range of 
array elements, ⟨p,q⟩ for pairs of values; etc. Your notation in comments doesn’t have 
to be part of the programming language.

Specification D25

☞ • For clarity, introduce variables in comments as pronouns. These may (or may not) 
correspond to program variables. Specification D26

☞ • Introduce defined terms, and use them for precision in comments. Specification D27

☞ • Omit specifications whose implementations are at least as brief and clear as the spec-
ification itself. Don’t over-comment. Specification D28

☞ • Use article “the” for a unique instance; use articles “a” or “an” for an arbitrary 
instance. Specification D29

☞ • Specify only what is needed, and no more, e.g., if an arbitrary instance suffices, don’t 
say which instance. Maximize flexibility for the implementation. Specification D30

☞ • Eliminate useless words. Make each word tell. Remove unneeded scaffolding. Specification D31

☞
• Adopt a standard vocabulary for comments, and use it consistently. Specify the 
return value of functions in header comments in a standard manner, e.g., “Return 

...”, or “== ...”. 
Specification D32

☞ • Adopt standard abbreviations, and use them for succinctness, e.g., “wrt”, “s.t.”, “i.e.”, 
“e.g.”, etc. Specification D33

☞ • If in the course of refinement you realize that a specification was incomplete, revise 
the specification. Specification D34

☞ • If in, the course of refinement you realize that a specification can be simplified, revise 
the specification, and the refinement. Specification D35

☞ • Don’t make postconditions any more specific than needed. Specification D36

☞ There is no shame in reasoning with concrete examples. Reasoning E01
☞ Alternate between concrete reasoning and abstract reasoning. Reasoning E02
☞ • Generate expressions, then test with concrete values. Reasoning E03

☞
• When generating an expression, get the positive and/or negative signs right first, 
then worry about the constants, e.g., the first element of A[0..n-1] is A[0], the k-th 
to last element is A[n-k], or is it A[n-1-k]? The k-th element of A[lo..hi] is A[lo+k], 
or is it A[lo+k-1]? Etc.

Reasoning E04



346 · Appendix: Precepts

☞ • Beware of off-by-one errors. Reasoning E05

☞
Be alert to high-risk coding steps associated with binary choices: “==” or “!=”, “<” 
or “<=”, “x” or “x-1”, condition or !condition, positive or negative, 0-origin or 1-ori-
gin, “even integers are divisible by 2, but array segments of odd length have middle 
elements”.

Reasoning E06

☞
Reason about conditions using de Morgan’s Law(s):
   not (P and Q) ≡  (not P) or (not Q) 
   not (P or Q ) ≡ (not P) and (not Q)

Reasoning E07

☞ Never test two floating-point numbers for equality or inequality. Reasoning E08
☞ A program’s internal data representation is central to the code; consider it early. Representation F01

☞ Design internal data representations based on internal computational needs, ignor-
ing input and output conversion considerations. Representation F02

☞ Choose data representations that are uniform, if possible. Representation F03
☞ Choose representations that by design do not have nonsensical configurations. Representation F04

☞ Don’t let the “perfect” be the enemy of the “good”. Be prepared to compromise because 
there may be no perfect representation. Don’t freeze. Representation F05

☞
Subproblems of a Sequential Refinement communicate via program state variables. In 
{S1; S2}, S1 establishes by its postcondition the precondition for S2, all as represented 
by program variables. Degenerate case: S1 sets a variable, and S2 uses that variable.

Representation F06

☞ For each representation, state the “representation invariant” in a comment in terms 
of all the variables involved. Representation F07

☞ Introduce redundant variables in a representation to simplify code, or make it more 
efficient. Representation F08

☞ Use row (or r) and col (or c) to index a 2-D array, not x and y. Representation F09

☞ The touchstone of a data representation is its utility in performing the needed oper-
ations. Representation F10

☞ Aspire to making code self-documenting by choosing descriptive names. Naming G01
☞ Use single-letter variable names when it makes code more understandable. Naming G02
☞ Minimize use of literal numerals in code; define and use symbolic constants. Naming G03
☞ Declare variables with as small a scope as possible. Naming G04

☞ Avoid gratuitously different names for parameters and variables whose use is essen-
tially the same. Practice conceptual economy. Naming G05

☞ Practice information hiding. Naming G06

☞ Procrastinate: Never code today what you can defer until tomorrow. Coding H01

☞ Defer challenging code for later; do the easy parts first. Coding H02
☞ Ignore fussy details for as long as possible. Coding H03

☞ Master stylized code patterns, and use them. (See separate list of templates.) Coding H04

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code bloat. Coding H05

☞ Introduce auxiliary data to allow code to be uniform. Coding H06

☞ Many short procedures are better than large blocks of code. Coding H07
☞ Maximize code reuse. Coding H08
☞ • Don’t type if you can avoid it; clone. Cut and paste, then adapt. Coding H09
☞ • Abstract (a.k.a., factor) clones into appropriately parameterized procedures. Coding H10
☞ Avoid rigid code. Anticipate change. Parameterize. Coding H11
☞ • Aim for single-point-of-definition. Coding H12
☞ Learn and use algebraic laws that support code refactoring. Coding H13

☞ Consider reducing dimensionality by changing “coordinate systems”, e.g., from 2-D 
⟨r,c⟩ to 1-D ⟨k⟩. Coding H14



347

☞ Consider reducing dimensionality by transforming a 2-D problem into a 1-D prob-
lem whose solution gives you the solution to the 2-D problem. Coding H15

☞ Adopt a formatting style, and stick with it. Be tidy wrt that style. Coding H16
☞ Label the end of a long class or method definition with its name in a comment. Coding H17
☞ Don’t optimize code prematurely. Coding H18

☞ Don’t confuse a subscript value with the value of the array element with that sub-
script. Coding H19

☞ Avoid obscurity. Be as direct as possible. Coding H20
☞ Avoid index arithmetic, if possible and convenient. Coding H21
☞ Avoid gratuitous differences in code. Reuse code patterns, if possible. Coding H22
☞ If you “smell a loop”, write it down. Iteration I01

☞ • Benefit from the fact that a while-loop divides a region of code into four subregions; 
a for-loop divides it into six. Iteration I02

☞ • Decide first whether an iteration is indeterminate (use a while) or determinate (use 
a for). Iteration I03

☞ • Beware of for-loop abuse; if in doubt, err in favor of while. Iteration I04

☞ Code iterations in the following order: (1) body, (2) termination, (3) initialization, 
(4) finalization, (5) boundary conditions. Iteration I05

☞
Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the “program 
state” when the music stops, i.e., at the instant the loop-body is about to execute yet 
again. If you had stopped one iteration later, what would have looked the same (the 

“loop invariant”), and what would have changed (the “loop variant”)?

Iteration I06

☞ • In a for-statement, the control-variable update is effectively part of the body. Iteration I07
☞ •To get to POST iteratively, choose a weakened POST as an INVARIANT. Iteration I08

☞ • The “loop variant” is an integer-valued expression >= 0 that is reduced by at least 1 
on each iteration. Its existence demonstrates termination. Iteration I09

☞ • Introduce program variables whose values describe “state”. Iteration I10

☞ • If the problem lends itself to diagrammatic reasoning, draw diagrams that character-
ize the invariant, and label key boundaries with program variables. Iteration I11

☞ • Alternate between using a concrete example to guide you in characterizing “program 
state”, and an abstract version that refers to all possible examples. Iteration I12

☞ • Write a comment that states succinctly, as an imperative, exactly what the loop body 
must accomplish each time it executes. Iteration I13

☞ • A Case Analysis in the loop body is often needed for characterizing different ways in 
which to decrease the loop variant while maintaining the loop invariant. Iteration I14

☞ • Use loop invariants to guide creativity. Iteration I15

☞
Termination. Do 2nd. Beware of confusion between condition for continuing and its 
negation, the condition for terminating. Beware off-by-one errors: stopping one iter-
ation too soon, or one iteration too late. Prevent illegal references using “short-circuit 
mode” Boolean expressions. 

Iteration I16

☞
Initialization. Do 3rd. Initialize variables so that the loop invariant is established prior 
to the first iteration. Substitute those initial values into the invariant, and bench check 
the first iteration with respect to that initial instantiation of the invariant.

Iteration I17

☞ Finalization. Do 4th, but don’t forget. Leverage that the looping condition is false, the 
loop invariant remains true, and the loop variant is 0. Iteration I18

☞ Boundary conditions. Dead last, but don’t forget them. Iteration I19

☞ • Find boundary conditions at extrema, and at singularities, e.g., biggest, smallest, 0, 
edges, etc. Iteration I20

☞
• Code the general case first. Then attempt to make the boundary case fit the general 
case, if possible, making as slight a change to the code as possible. Consider possi-
ble use of sentinels.

Iteration I21

☞ Control complexity. Testing J01



348 · Appendix: Precepts

☞ Develop programs with testability in mind. Testing J02
☞ • Consider conditional diagnostic output, e.g., “if (debug) …”. Testing J03
☞ • Consider conditional assertions, e.g., “if (asserts) if (!assertion) …”. Testing J04
☞ Write a test harness as an integral part of a class. Testing J05
☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program. Testing J06
☞ • Test programs incrementally. Testing J07
☞ • Write degenerate program stubs that allow partial programs to execute. Testing J08
☞ Test programs thoroughly. Testing J09
☞ • Test all corner cases. Testing J10
☞ • Consider generating test data programmatically. Testing J11
☞ Validate output thoroughly. Testing J12



349

APPEnDIx II  
Patterns

Pattern Name #

☞ /* Specification. */ Specification A01

☞ /* Specification. */
   Implementation

Statement 
specification A02

☞ /* What. */
   /* How. */

Statement 
specification A03

☞ /* Given precondition, establish postcondition. */ Statement 
specification A04

☞ type x; // Representation invariant of x. Declaration 
specification A05

☞ /* Representation Invariant. */
   Declarations of related variables

Declaration 
specification A06

☞ /* Specification. */
Method definition

Method 
specification A07

☞ /* Specification. */
Class definition

Class
specification A08

☞

/* Specification P. */
   /* Specification P1. */
   /* Specification P2. */
   ...
   /* Specification Pn. */

Sequential 
Refinement B01

☞

/* Specification P. */
   if ( condition1 ) /* Specification P1. */
   else if ( condition2 ) /* Specification P2. */
   ...
   else if ( conditionn-1 ) /* Specification Pn-1. */
   else /* Specification Pn. */

Case Analysis B02

☞
/* Specification P. */
   /* Setup for P′. */
   while ( condition )
      /* Specification P′. */

Iterative Refinement B03



350 · Appendix: Patterns

☞

/* Specification P. */
   if ( base case ) /* P0. */
   else
      /* Identify smaller instance(s) of P within P
         itself, apply this approach to each such 
         instance, and combine the results. */

Recursive 
Refinement B04

☞
/* Get from PRE to POST. */
   /* Get from PRE to MID. */
   /* Get from MID to POST. */

Sequential 
Refinement, 
w/ conditions

B05

☞

/* Get from PRE to POST. */
   /* Get from A1 to B1. */
   /* Get from A2 to B2. */
   ...
   /* Get from An to Bn. */
where PRE implies A1, Bk implies Ak+1 (for 1≤k<n), and Bn 
implies POST.

Sequential 
Refinement, 
w/ conditions

B06

☞

/* Specification P: Get from PRE to POST. */
   /* Get from PRE to A. */
      /* Define problem P′ based on PRE. */
      /* Solve problem P′. */
      /* Establish A from the solution to problem P′. */ 
   /* Get from B to POST. */

Problem reduction,
w/ conditions B07

☞

/* Specification P: Get from PRE to POST. */
   if ( condition )
      /* Specification P1: 
         Get from PRE && condition to A1. */
   else
      /* Specification P2: 
         Get from PRE && !condition to A2. */
where A1 implies POST and A2 implies POST.

Case Analysis,
w/ conditions B08

☞

/* Specification P: Get from PRE to POST. */
   /* Get from PRE to INVARIANT. */
   while ( condition ) {
      /* Get from condition && INVARIANT to INVARIANT. */
      }
where !condition && INVARIANT entails POST.

Iterative Refinement,
w/ conditions B09

☞ /* Compute. */
/* Use. */

Sequential 
refinement C01

☞ /* Search. */
/* Use the search result. */

Sequential
refinement C02

☞ /* Initialize. */
/* Compute. */

Sequential 
refinement C03

☞
/* Initialize. */
/* Compute. */
/* Output. */

Initialize, Compute, 
Output C04

☞
/* Input. */
/* Compute. */
/* Output. */

Offline 
computation C05



351

☞

/* Initialize. */
while ( /* not finished */ ) {
   /* Compute. */
   /* Go on to next. */
   }

General iterative 
computation C6

☞ for (initialize; condition; go-on-to-next) compute General iterative 
computation C7

☞

v = /* first input value */;
/* Initialize. */
while ( v != /* stoppingValue */ ) {
   /* Process v. */
   v = /* next input value */;
   }
/* Finalize. */

Online 
computation C08

☞ /* Swap x and y. */
   int temp = x; x = y; y = temp; Exchange C09

☞
/* Enumerate from start. */
   int k = start;
   while ( condition ) k++;

1-D Indeterminate 
enumeration D01

☞

/* Search for or fail. */
   int k = 0;
   while ( /* not passed the end? */  &&
          /* not at what seeking? */ ) k++;
if ( k /* is passed end? */ ) /* fail */
else /* succeed */

1-D Indeterminate
enumeration D02

☞

/* Search for or fail, with sentinel. */
   /* Put example of what’s sought one place passed 
      the end.*/
   int k = 0;
   while (  /* not at what seeking? */ )
      k++;
if ( k /* is passed end? */ ) /* fail, found sentinel */
else /* succeed */

1-D Indeterminate
enumeration, 
w/ sentinel

D03

☞

/* Do whatever n times. */
   int k = 0;
   while ( k<n ) {
      /* whatever */
      k++;
      }

1-D Determinate
enumeration D04

☞
/* Do whatever n times. */
   for (int k=0; k<n; k++) /* whatever */
or
   for (int k=1; k<=n; k++) /* whatever */

1-D Determinate
enumeration D05

☞

/* Enumerate ⟨r,c⟩ in [0..height-1][0..width-1] in
   row-major order until condition. */
   int r = 0; int c = 0;
   while ( r<height && !condition )
      if ( c<width-1 ) c++;
      else { c = 0; r++; }
if ( r==height ) /* fail */ else /* succeed */

2-D Indeterminate enu-
meration, row-major 
order

D06



352 · Appendix: Patterns

☞

/* Unbounded enumeration of ordered ⟨r,c⟩ until
   condition. */
   int d = 0;
   while ( !condition ) {
      int r = d;
      for (int c=0; c<=d; c++ ) {
         /* whatever */
         r--;
         }
      d++;
      }

2-D Indeterminate enu-
meration, 
diagonal order

D07

☞

/* Enumerate ⟨r,c⟩ in [0..height-1][0..width-1] in
   row-major order. */
   for (int r=0; r<height; r++)
      for (int c=0; c<width; c++)
         /* whatever */

2-D  Determinate enu-
meration, row-major 
order (0-origin)

D08

☞

/* Enumerate ⟨r,c⟩ in [1..height][1..width] in row-major
   order. */
   for (int r=1; r<=height; r++)
      for (int c=1; c<=width; c++)
         /* whatever */

2-D Determinate enu-
meration, row-major 
order (1-origin)

D09

☞

/* Enumerate ⟨r,c⟩ in [0..height-1][0..width-1] in
   column-major order.*/
   for (int c=0; c<width; c++)
      for (int r=0; r<height; r++)
         /* whatever */

2-D Determinate enu-
meration, column-major 
order (0-origin)

D10

☞

/* Enumerate ⟨r,c⟩ in a closed lower-triangular region of
   [0..size-1][0..size-1] in row-major order.*/
   for (int r=0; r<size; r++)
      for (int c=0; c<=r; c++)
         /* whatever */

2-D Determinate enu-
meration, 
closed triangular 
order

D11

☞

/* Enumerate ⟨r,c⟩ in a open lower-triangular region of
   [0..size-1][0..size-1] in row-major order.*/
   for (int r=0; r<size; r++)
      for (int c=0; c<r; c++)
         /* whatever */

2-D  Determinate 
enumeration, 
open triangular order

D12

☞

/* Let p be the location of what you are looking for, 
   or an indication that no such thing exists. */
   p = the-first-place-look;
   while ( p is-not-beyond-the-last-place-to-look && 
           p is-not-what-you-are-looking-for )
      p = the-next-place-to-look;
if (p is-not-beyond-the-last-place-to-look ) /* Found. */
else /* Not found. */

Sequential Search
(general case) E01

☞

/* Given P(x), a boolean-valued expression parameterized
   by x, with domain 0..n-1, let k be smallest int s.t.
   P(k) is true, or n if there is no such k. */
   int k = 0;
   while ( k<n && !P(k) ) k++;

Sequential Search 
(for integer with a 
property)

E02



353

☞

/* Given int-valued function S(j) defined on non-empty
   int domain first through last, let k in that domain 
   be s.t. S(k) is minimal. */
   int k = first;
   int minS = S(first);
   for (int j=first+1; j<=last; j++) {
      int s = S(j);
      if ( s<minS ) { minS = s; k = j; }
      }

Integer in domain of 
function S(j) for which 
S is minimal

E03

☞
/* best = min value in A[0..n-1], n>=0. */
   int best = /* +infinity */;  // min so far.
   for (int k=0; k<n; k++)
      best = Math.min(best, A[k]);

Minimal element
in 1-D array E04

☞
/* Let k be s.t. A[k] is min value in A[0..n-1], n>0. */
   int k = 0  // A[0] is min so far.
   for (int j=1; j<n; j++)
      if ( A[j]<A[k] ) k = j;

Index of 
minimal element 
in non-empty
1-D array

E05

☞

/* Given array A[0..n-1], and 0≤k, shift elements of A
   left k places. Values shifted off the left end of the
   array are lost. Values not overwritten remain as they
   were originally. */
   if ( k>0 ) 
      for (int j=0; j<n-k; j++) A[j] = A[j+k];

Left-Shift-k F01

☞
/* Rotate A[0..n-1] left 1. */
   /* type */ temp = A[0];
   /* Shift A[1..n-1] left. */
   A[n-1] = temp;

Left-Rotate-1 F02

☞

/* Reverse A[0..n-1] */
   int lo = 0; int hi = n-1;
   while ( lo<hi ) {
      /* Swap A[lo] and A[hi]. */
      lo++; hi--;
      }

Reverse F03

☞
/* Rotate A[0..n-1] left k. */
   /* Reverse(A,0,k-1); */
   /* Reverse(A,k,n-1); */
   /* Reverse(A,0,n-1); */

Left-Rotate-k F04

☞
/* A[0..size-1] are items in the collection, 0≤size≤n. */
   int A[];  // receptacle for items in a list.
   int size; // current # of elements in list, 0≤size≤n.
   int n; // maximum # of elements storable in the list.

Data structure for a col-
lection represented as 
a list

G01

☞

/* Return k, a location of v in A, or return size if no
   v in A. */
static int indexOf(int v; int A[], int size) {
   int k = 0;
   while ( k<size && A[k]!=v ) k++;
   return k;
   }

Search utility for a col-
lection represented as 
a list

G02



354 · Appendix: Patterns

☞

/* Add v to A. */
   /* Ensure that A has capacity for another element. */
      if ( size==n ) /* Make room, or sound an alarm. */
   A[size] = v;
   size++;

Add item to unordered 
collection represented 
as a list

G03

☞
/* Remove v from A. */
   int k = indexOf(v, A, size);
   if ( k==size ) /* v is not in A. */
   else { size--; A[k] = A[size]; }

Remove item from 
unordered collection 
represented as a list

G04

☞
/* Set b to true if v is in A, and false otherwise. */
   int k = indexOf(v, A, size);
   boolean b = (k<size);

Membership of item in 
collection represented 
as a list

G05

☞
/* Set m to the multiplicity of v in A. */
   int m = 0;
   for (int k=0; k<size; k++) if ( A[k]==v ) m++; 

Multiplicity of item in 
colletion represented as 
a list

G06

☞
/* Enumerate elements of A. */
   for (int k=0; k<size; k++) 
      /* Do whatever for A[k]. */

Enumeration of items in 
collection represented 
as a list

G07

☞
/* Collection of items in range 0..maxValue, where 
   multiplicity of v is H[v]. */
   int H[0..maxValue];

Data structure for a col-
lection represented as a 
histogram

H01

☞ /* Add v to H. */
   H[v]++;

Add item to collection 
represented as a histo-
gram

H02

☞
/* Remove v from H. */
   if ( H[k]==0 ) /* Alarm: removal of value not in H. */
   else H[k]--;

Remove item from col-
lection represented as a 
histogram

H03

☞ /* b = true iff v is in H. */
   boolean b = (H[v]>0);

Membership of item 
from collection repre-
sented as a histogram

H04

☞ /* m = Multiplicity of v in A. */
   int m = H[v];

Multiplicity of item in 
collection represented as 
a histogram

H05

☞
/* Enumerate elements of H. */
   for (int k=0; k<=maxValue; k++)
      for (int j=1; j<=H[k]; j++)
         /* Enumerate k */

Enumeration of items in 
collection represented as 
a histogram

H06



355

APPEnDIx III  
Language Similarities

Think of a programming language as a variety of daisy, with a central “disk floret”, and 
multiple  “ray florets”. The central disk is the set of universal features, and the rays 
are various specialized features that add to the language’s appeal. There are many 
programming languages, but when you strip them down to their core (by plucking 
all their ray florets), they all look pretty much alike. The language of Chapter 2 is that 
core, and this Appendix describes it for Java [6], Python [7], C/C++ [52], and 
JavaScript [53]. You will be struck by the similarities, which is not to say that the dif-
ferences are inconsequential; rather, it is just that at the level of this book, they are 
immaterial.166

Concepts
Typed vs Untyped Variables. In Java and C/C++, variables are declared with a spe-

cific types that remains the same throughout program execution, whereas 
in Python and JavaScript, variables are untyped, and can contain values of 
one type at one moment, and other types at other moments. There is, how-
ever, nothing to prevent you from following a self-discipline in which each 
variable is used for values of a single type.

Declared vs Undeclared Variables. Because Java and C/C++ provide types for vari-
ables, they are always declared. Variables in JavaScript are declared (albeit 
without a type), whereas variables in Python are not. Variables have scope 
(the textual region with a program where they matter), and the position of 
the declaration identifies that scope. In the absence of declarations, the scope 
of a variable is somewhat obscure, a detail that we omit. 

Homogeneity vs Heterogeneity of  Arrays. In Java and C/C++, each element 
of an array has the same type, whereas in Python and JavaScript each ele-
ment of an array (known as a list), can be a value with a different type. The 
homogeneity of arrays in Java and C/C++ is ameliorated by the notions of 
subtype and class hierarchy, but these do not enter into the core language 
of Chapter 2.

Numerical Values. Java and C/C++ distinguish between integers and floating-point 

166. For the purpose of this summary, we ignore languages for which the central cores are 
vastly different from the imperative programming languages listed. We also ignore the details 
of object orientation, i.e., the extended language of Chapter 18.



356 · Debugging

numbers, and between single precision (32 bits) and double precision (64 
bits). Python treats all integers as arbitrary precision, whereas JavaScript 
treats all numbers as double-precision floating-point values.

Object Homogeneity. Some languages distinguish between primitive types, e.g., 
int and boolean, and object types, e.g., Integer and Boolean. This issue 
is not relevant to the core Chapter 2 language.

Type Compatibility. Some settings require only “compatible” types rather than 
identical types, e.g., interchangeability between different numeric types. 
The term “compatible” is used below without elaboration because we deem 
it a distracting detail.

Storage Management by Garbage Collection. Results of some operations (like 
string concatenation) draw on a shared pool of available memory. When 
a value is no longer needed, that memory is automatically returned to the 
pool by a process known as “garbage collection”. Java, Python, and JavaScript 
have automatic garbage collection, but C/C++ does not. Because storage 
management is beyond the scope of the Chapter 2 language, string concat-
enation in C/C++ in omitted from the table below.

Insignificance vs Significance of Whitespace. Whitespace (e.g., spaces, newlines, 
and indentation) are totally ignored in Java, C/C++, and JavaScript (except 
within String constants) but are significant in Python for delimiting state-
ments, and for indicating which statements are in a block. 

Constructs
In the tables below, an item for a given language and syntactic category is not intended 
to be a comprehensive definition; rather it is provided as a near-equivalent of the 
Chapter 2 construct in the given language. For example, in JavaScript, a string con-
stant can be signified by matched single or double quotation marks (to facilitate using 
the other kind of quote within the constant), but we only provide the double-quote 
variety (considering the question of quotation marks within string constants to be 
a detail not worth the distraction). Similarly, “⟨same as Java⟩” does not signify that 
the constructs are identical in the two languages; rather, it means only that for the 
purposes of this text, they are the same. 

Statements
Assignment Statement

Java variable = expression; Type of expression must be compatible 
with the type of variable. 

Python variable = expression Variable has no type, so a value of 
any type can be assigned to it. A sim-
ple-statement.

C/C++ ⟨same as Java⟩
JavaScript variable = expression; ⟨same as Python⟩

Auto-Increment
Java variable++;
Python variable += 1 A simple-statement.

C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩



357

Auto-Decrement
Java variable--;
Python variable -= 1 A simple-statement.

C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩

Conditional (2-way)
Java if ( condition ) statement1 else statement2 Statement1 may not be a 1-way condi-

tional statement.

Python if expression: block1
else: block2 

Separate lines  for if and else. A com-
pound-statement.

C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩

Conditional (1-way)
Java if ( condition ) statement 
Python if condition: block A compound-statement.

C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩

Conditional (n-way)
Java if ( condition1 ) statement1

else if ( condition2 ) statement2
 ...
else if ( conditionn-1 ) statementn-1
else statementn

No statementi may be a 1-way 
conditional statement other than state-
mentn.

Python if condition1: block1
elif condition2: block2
 ...
elif conditionn-1: blockn-1
else: blockn

Separate lines for each if, elif, and 
else . A compound-statement.

C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩

Indeterminate Iteration
Java while ( condition ) statement
Python while expression: block A compound-statement.

C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩

Determinate Iteration
Java for ( init; condition; update ) statement

  init
      type name = expression
      name = expression
  update
      name = expression
      name++
      name--



358 · Appendix: Language Similarities

Python for name in list-expression: block
  list-expression
      range(expression1, expression2)

A compound-statement.

C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩ but replace type by var.

Output (with line completion)
Java System.out.println( expression ); Use string concatenation (+)  in 

expression to build line.

Python print(arguments) Use arguments to build line of 
space-separated values. A simple-state-
ment.

C/C++ printf(format-string, arguments) Use format-string to build the line, e.g., 
the format string "%i,%i\n" signi-
fies two int values separated by a 
comma.

JavaScript document.write(expression + "<br>"); JavaScript output can replace code that 
appears within
   <script>code</script> 
tags with text that is then interpreted as 
HTML for its formatting effect.

Output (without line completion)
Java System.out.print( expression );
Python print(arguments, end="") A simple-statement.

C/C++ printf(format-string, arguments) See above for format-string.

JavaScript document.write(expression); See above for interpretation.

Output (line completion)
Java System.out.println( );
Python print() A simple-statement.

C/C++ printf("\n")
JavaScript document.write("<br>"); See above for interpretation.

Method Invocation
Java name( arguments ); Also known as a procedure call.

Python name( arguments ) Also known as a procedure call. A sim-
ple-statement.

C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩

Return (no return value)
Java return; Only in void method.

Python return A simple-statement.

C/C++ ⟨same as Java⟩ Only in void method.

JavaScript return; Same as return undefined;

Return (with return value)
Java return expression; Only in non-void method.

Python return expression A simple-statement.

C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩



359

Block instance 
Java block Conditional clauses and loop bod-

ies are statement, which is optionally 
block.

Python Limited usage.

C/C++ block Conditional clauses and loop bod-
ies are statement, which is optionally 
block.

JavaScript ⟨same as Java⟩

Block
Block statement 
Java { declarations-and-statements } Declarations and statements can be 

interleaved, provided declaration of a 
variable precedes its first use.

Python stmt-list NEWLINE or 
NEWLINE INDENT statements DEDENT

where stmt-list is a list of ";"-separated sim-
ple-statements, optionally followed by a ";", all on 
the same line

and statements is a list of stmt_list NEWLINE or 
compound-statement

Individual statement forms are iden-
tified in the tables above as either 
simple-statements or compound-state-
ments.

See section Indentation in Python at 
the end of this chapter for a discussion 
on the syntactic role of indentation. 

C/C++ { declarations statements } Optional declarations precede state-
ments.

JavaScript ⟨same as Java⟩

Variables
Scalar
Java name

Python ⟨same as Java⟩
C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩

Subscripted variable (one dimensional)
Java name[expression]
Python ⟨same as Java⟩
C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩

Subscripted variable (two dimensional)
Java name[expression1][expression2]
Python ⟨same as Java⟩
C/C++ ⟨same as Java⟩ However, see section Arguments 

and Parameters and section Array 
Parameters in C/C++.  

JavaScript ⟨same as Java⟩



360 · Appendix: Language Similarities

Expressions

Constants
Integer
Java …, -2, -1, 0, 1, 2, … Type int.

Python ⟨same as Java⟩ Integers are arbitrarily large.

C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩ All numerics are 64-bit floating 

point.
Floating-point (single precision)
Java 3.14159f0, 6.0221409f+23,… Type float.

Python Not supported.

C/C++ 0.0f, 3.14159f, 6.0221409e+23f,…

JavaScript All numerics are 64-bit floating 
point.

Floating-point (double precision)
Java 0.0, 3.14159, 6.0221409e+23,… Type double.

Python ⟨same as Java⟩ All floating point are 64-bit.

C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩ All numerics are 64-bit floating 

point.
Logical 
Java false, true Type boolean.

Python False, True Type bool.

C/C++ 0, ⟨any nonzero⟩
JavaScript ⟨same as Java⟩

Character 
Java 'a', 'b', 'c', … Type char.

Python "a", "b", "c",… String of length 1.

C/C++ ⟨same as Java⟩
JavaScript ⟨same as Python⟩

String 
Java "characters"
Python ⟨same as Java⟩
C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩

Null reference 
Java null

Python None

C/C++ 0
JavaScript ⟨same as Java⟩



361

Primitives
Variable

Java variable

Python ⟨same as Java⟩
C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩

Integer input
Java in.nextInt() Provided in has been initialized by

   new Scanner(System.in).

Python int(input())
C/C++ scanf("%i", &variable ); This is a statement, not an expression.

JavaScript (+prompt()) Opens a popup dialog box for input, 
and returns a numeric.

Method invocation (of value-returning methods)
Java name( arguments ) Also known as a function call.

Python ⟨same as Java⟩
C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩

One-dimensional array creation
Java new type[ expression ] Value of expression is length of array, 

initialized with elements that contain 
the default value of the given type, e.g., 
0 for type int.

Python [ expressions ] Number of  expressions is length of 
array whose elements are the values of 
the expressions.

C/C++ ⟨possible, but without garbage collection⟩ Use declaration.

JavaScript new Array( expression )

[ expressions ]

Value of expression is length of array, 
initialized with undefined values.
⟨same as Python⟩

Two-dimensional array creation
Java new type[ expression1 ][ expression2 ] Value of expression1 is length of a 

one-dimensional array, initialized with 
elements that are themselves one-di-
mensional arrays of length expression2, 
initialized with elements that contain 
the default value of the given type, e.g., 
0 for type int.

Python [ [ expressions ] ... [expressions] ] Number of “[expressions]” is height; 
each expressions determines values in 
column.

C/C++ ⟨possible, but without garbage collection⟩ Use declaration.

JavaScript ⟨same as Python⟩

Binary operations
operand binary-operator operand

where operands are expressions, and the binary-operators are as follows:



362 · Appendix: Language Similarities

Arithmetic
Java +, -, *, /, % Result type integer if both operands 

integer, otherwise floating point.

Python ⟨same as Java⟩
C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩

Relational (arithmetic values)
Java <, <=, >, >=, ==, != Result type boolean.

Python ⟨same as Java⟩ Result type bool.

C/C++ ⟨same as Java⟩ Result type numerical.

JavaScript ⟨same as Java⟩
Identity and equality (String and array values)
Java ==, != Identity. Result type boolean.

See Chapters 12 and 18.

Python ⟨same as syntax as Java, but different meaning⟩ Equality. Result type bool.

C/C++ ⟨same as Java⟩ Result type numerical

JavaScript ⟨subtle, and beyond the scope of this book⟩
Logical
Java &&, || Short-circuit mode and and or; result 

type boolean.

Python ⟨same as Java⟩ Short-circuit mode and and or; result 
type bool.

C/C++ ⟨same as Java⟩ Short-circuit mode and and or; where 
nonzero operand is true, zero is false. 
Result is type int (0 or nonzero).

JavaScript ⟨same as Java⟩ Short-circuit mode and and or; result 
type boolean.

String concatenation
Java + If one operand has type String.

Python + If both operands have type str.

C/C++ ⟨No exact analogue with garbage collection⟩
JavaScript ⟨same as Java⟩

Unary operations
unary-operator operand

where operand is and expression, and the unary-operators are as follows:
Negation (arithmetic)
Java - Result type same as operand type

Python ⟨same as Java⟩ Result type same as operand type.

C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩

Negation (logical)
Java ! Result type boolean.

Python not Result type bool.

C/C++ ⟨same as Java⟩



363

JavaScript ⟨same as Java⟩

Grouping
Parentheses
Java ( expression )
Python ⟨same as Java⟩
C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩

Types
Integer
Java int, long 32-bit, 64-bit

Python Values have unbounded range, i.e., they 
are not limited to 32 or 64 bits.

C/C++ ⟨same as Java⟩
JavaScript Number All numerics are 64-bit double-preci-

sion floating-point.
Floating point
Java float, double 32-bit, 64-bit.

Python float All floating point are 64-bit.

C/C++ ⟨same as Java⟩
JavaScript Number All numerics are 64-bit double-preci-

sion floating-point.
Logical
Java boolean

Python bool

C/C++ int

JavaScript ⟨same as Java⟩
Character 
Java char

Python Just a string of length 1.

C/C++ ⟨same as Java⟩
JavaScript Just a string of length 1.

String
Java String

Python str

C/C++ char*

JavaScript ⟨same as Java⟩
No value
Java void Type of method that doesn't return  a 

value.

Python ⟨same as Java⟩
C/C++ ⟨same as Java⟩



364 · Appendix: Language Similarities

JavaScript ⟨same as Java⟩
Array (one dimensional)

Java type[]
Python list
C/C++ ⟨same as Java⟩
JavaScript array

Array (two dimensional)
Java type[][] array (of arrays)

Python list list (of lists)

C/C++ ⟨same as Java⟩
JavaScript array array (of arrays)

Declarations
Scalar variable (with default initialization)
Java type name; Variables are declared with types. Scope 

is determined by the innermost “{}” in 
which the variable is declared.

Python Variables are not declared. Values have 
type but variables do not. Scope is sub-
tle, and is not discussed here.

C/C++ ⟨same as Java⟩
JavaScript var name; Variables are declared, but without 

types. Values have type but variables do 
not. Scope is ⟨same as Java⟩.

Scalar variable (with initialization by specific value)
Java type name = expression;
Python Variables are not declared.

C/C++ ⟨same as Java⟩
JavaScript var name = expression; Variables are not declared with types.

One-dimensional array of type elements (with initialization as array of given length)
Java type name[] = new type[expression1]; Expression is length of array that is ini-

tialized with default values for type.

Python Variables are not declared.

C/C++ type name[expression]; Expression is length of array that is ini-
tialized with undefined values.

JavaScript var name = new Array(expression); Variables are not declared with types. 
Expression is length of array that is ini-
tialized with undefined values.

Two-dimensional array of type elements (with initialization as array of given height 
and width)
Java type name[][] = 

   new type[expression1] [expression2]
Expression1 and expression2 are height 
and width of array. Array is initialized 
with default values for type.

Python name = [[0 for i in range(expression2)] 
        for j in range(expression1)]

Variables are not declared.



365

C/C++ type name[expression1][expression2]; Expression1 and expression2 are height 
and width of array that is initialized 
with undefined values.

JavaScript let name = Array(expression1);
for (var i = 0; i<expression1; i++) {
   name[i] = new Array(expression2);
   }

Variables are not declared with types. 
The array is initialized with undefined 
values.

One-dimensional array of elements(with initialization by list of specific values)
Java type name[] = { expressions } ; Expressions are comma separated. Each 

expression value has the same type.

Python name = [ expressions ] Variables are not declared, but you can 
just write this assignment statement.

C/C++ ⟨same as Java⟩ Expressions are comma separated. Each 
expression value has the same type.

JavaScript var name = [ expressions ]; Variables are not declared with types. 

Definitions
Method
Java type name( parameters ) block
Python def name( parameters ): block
C/C++ ⟨same as Java⟩
JavaScript function name ( parameters ) block

Class
Java class name block
Python classdef name: block Top-level statements of a program do 

not need to be in a class.

C/C++ Not needed for the language of 
Chapter 2 because separate files can be 
used for modularity.

JavaScript ⟨same as Java⟩

Arguments and Parameters
Arguments 

Java An ordered, comma-separated list of expressions.
Python ⟨same as Java⟩
C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩

Parameters 
Java An ordered, comma-separated list of type-name pairs.
Python An ordered, comma-separated list of names.
C/C++ Each parameter is:

 t name     ⟨if name is scalar of type t⟩
 t name[]   ⟨if name is 1-D array of type t elements⟩
 void *name   ⟨if name is 2-D array of type t elements⟩ 

See section Array Parameters in C/C++ 
at the end of this chapter.  

JavaScript ⟨same as Python⟩



366 · Appendix: Language Similarities

Comments
Block comment (can cross lines)
Java /* any-text */
Python Not supported.

C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩

Comment (to end of line)
Java // any-text-to-end-of-line
Python # any-text-to-end-of-line
C/C++ ⟨same as Java⟩
JavaScript ⟨same as Java⟩

Indentation in Python
Specifications written in comments play an important role in our methodology, so 
clear rules for mapping them into Python are important. Python only supports com-
ments that begin with a hash mark (#) and extend to the end of the line. Comments 
with matched left (/*) and right (*/) delimiters are not supported. 

Consider the Sequential Refinement:

/* Specification P. */
   /* Specification P1. */
   /* Specification P2. */
   ...
   /* Specification Pn. */

where any /* Specification Pi */ can be a code-level statement rather than a com-
ment. 

We can map the given specification and its refinement to Python, as follows:

# Specification P.
   # Specification P1.
   # Specification P2.
   ...
   # Specification Pn.

but how are we to know when one multi-line sub-specification Pi ends and the next 
sub-specification Pi+1 begins? We suggest that when a specification continues on 
subsequent lines, indent those lines within the comment:

# Specification P.
#   <continuation of P.>
   # Specification P1.
   #   <continuation of P1.>
   # Specification P2.
   #   <continuation of P2.>
   ...
   # Specification Pn.
   #   <continuation of Pn.>



Constructs · 367

A second and more important complication for mapping our notation into Python is 
a consequence of Python’s use of indentation (rather than matched braces) to indi-
cate a block. Thus, for example, the Java code:

if ( condition ) {
   declarations-and-statements
   }
else {
   declarations-and-statements
   }

would be written in Python as:167

if condition:
   list-of-statements
else:
   list-of-statements

The rationale for this feature is that since you will indent the list-of-statements any-
way, why not let the indentation determine the block, spare the programmer having 
to type matched braces, and save lines.

An adverse aspect of the feature is that all top-level statements in the block are 
required to be indented the same amount, regardless of where they happen to fall in 
a refinement hierarchy used to organize them within the block.

For example, consider the following method definition from Chapter 1: Each 
statement is indented relative to its encompassing specification by a fixed amount, 
e.g., three spaces:

static void main() {
   /* Output the Integer Square Root of an integer input. */
      /* Obtain an integer n≥0 from the user. */
         int n = in.nextInt();
      /* Given n≥0, output the Integer Square Root of n. */
         /* Let r be the integer part of the square root of n≥0. */
            int r = 0;
            while ( (r+1)*(r+1) <= n )
               r++;
         System.out.println( r );
   } /* main */

The following direct transcription of main into Python is incorrect because the four 
red top-level statements must be identically indented in the body of  main: 

def main():
   # Output the Integer Square Root of an integer input.
      # Obtain an integer n≥0 from the user.
         n = int(input())
      # Given n≥0, output the Integer Square Root of n.
         # Let r be the integer part of the square root of n≥0.
            r = 0
            while (r+1)*(r+1) <= n :
               r += 1
         print( r )
   # main

167. We write list-of-statements as a simplification of the actual syntax.



368 · Appendix: Language Similarities

A correct transcription aligns those top-level statements:

def main():
   # Output the Integer Square Root of an integer input.
      # Obtain an integer n≥0 from the user.
            n = int(input())
      # Given n≥0, output the Integer Square Root of n.
         # Let r be the integer part of the square root of n≥0.
            r = 0
            while (r+1)*(r+1) <= n :
               r += 1
         #
            print( r )
   # main

In this transcription, we have abandoned the individualized indentation of each 
statement relative to the specific specification that it implements in order to have the 
required uniform alignment of all of the block’s top-level statements in the same col-
umn (to the right of all of their respective encompassing specifications).

The example illustrates two other fine points of the mapping:
• The green hash mark (#) is inserted and aligned below the green specification 

as a way to signal that print(r) is its sibling in the refinement of the violet 
specification that they collectively implement. 

• The blue statement “r+=1” can be indented any amount (to the right of the red 
statements) because it is in its own nested block.

Array Parameters in C/C++
Array arguments in C/C++ are provided to a procedure “by reference”, which means 
that the base address in memory of the elements of the array is provided as the argu-
ment value.

In the case of a one-dimensional array, the base address of the array, and the num-
ber of bytes of each element, are sufficient to compute the byte address of an arbitrary 
array element, e.g., the kth element:

0 1 kbase n address

However, in the case of a two-dimensional array, extra work is required because 
in C/C++ the array elements are laid out in row major order in contiguous mem-
ory locations. Thus, for example, to compute the byte address of an element in row 
r and column c of a 3-by-2 int array requires knowing the width of each row (in 
bytes), i.e., 2·m, where m is the number of bytes in each element:

0 1 2base
0 1 0 1 0 1

address

We illustrate how to deal in C/C++ with parameters that are two-dimensional 
arrays by showing how the following Java method would be implemented:



Constructs · 369

/* Display the elements of a two-dimensional int array 
   A[0..height-1][0..width-1] in row major order. */
void Display(int A[][], int height, int width) {
   for (int r=0; r<height; r++) {
      for (int c=0; c<width; c++) System.out.println( A[r][c]+" " );
      System.out.println();
      }
   }

A client who has declared a particular array, say, B, by:

int B[][] = new int[3][2];

can print it without difficulty in Java by invoking:

Display( B, 3, 2);

But in C/C++, it is not permissible to subscript an array parameter such as A 
because the width of an arbitrary argument such as B must be associated with A 
explicitly rather than just implicitly by virtue of another parameter of Display. The 
corresponding method in C/C++ would be:

/* Display the elements of a two-dimensional int array 
   A[0..height-1][0..width-1] in row major order. */
void Display(void *A, int height, int width) {
   int (*p_A)[height][width] = (int (*)[height][width]) A;
   for (int r=0; r<height; r++) {
      for (int c=0; c<width; c++) System.out.println( (*p_A)[r][c]+" " );
      System.out.println();
      }
   }

where int parameter A is defined as “void *A”, a generic reference to anything. 
Variable “p_A” is then declared to have type “reference to a height-by-width int 
array”, and is initialized to the value provided as an argument for A. An array element 
on row r and column c of the referenced argument array B can then be accessed in 
the body of Display using  “(*p_A)[r][c]”.



370 · Appendix: Knight’s Tour



371

APPEnDIx IV  
Knight’s Tour

   1 /* Knight’s Tour. See problem statement in Chapter 14. */
   2 import java.util.*;
   3 class KnightsTour {
   4    /* Chess board B is an N-by-N int array, for N==8. Unvisited squares
   5       are BLANK, and row and column indices range from lo to hi. */
   6       static final int N = 8;            // Size of B.
   7       static int [][] B = new int[N+4][N+4]; // Chess board, initially 0s.
   8       static final int BLANK = 0;        // Vacant square in board.
   9       static final int lo = 0+2;         // First row or column index.
  10       static final int hi = lo+N-1;      // Last row or column index.
  11 
  12    /* A Tour of length move is given by elements of B numbered 1
  13       to move. Squares numbered consecutively go from f0,0⟩ to
  14       ⟨r,c⟩, and correspond to legal moves for a Knight. */
  15       static int move;      // Length of Tour.
  16       static int r, c;      // Position of Knight.
  17 
  18    /* Neighbor coordinate system. */
  19       static final int CUL_DE_SAC = 8;   // Not a neighbor.
  20       /* Row and column offsets for eight neighbors. */
  21          //                            0   1   2   3   4   5   6   7
  22          static final int deltaR[] = {-1, -2, -2, -1,  1,  2,  2,  1};
  23          static final int deltaC[] = { 2,  1, -1, -2, -2, -1,  1,  2};
  24
  25    static Random rand = new Random();  // Random number generator.
  26 
  27    /* Establish invariant for a tour of length 1. */
  28    static void Initialize() {
  29       /* Set B to N-by-N board of BLANKs in 2-cell ring of non-BLANK. */
  30          for (int r = lo-2; r<=hi+2; r++)
  31             for (int c = lo-2; c<=hi+2; c++)
  32                B[r][c] = BLANK+1;
  33          for (int r = lo; r<=hi; r++)
  34             for (int c = lo; c<=hi; c++)
  35                B[r][c] = BLANK;
  36       r = lo; c = lo; 
  37       move = 1; B[r][c] = move;



372 · Appendix: Knight’s Tour

  38       } /* Initialize */
  39 
  40    /* Return # of unvisited neighbors of ⟨r,c⟩. */
  41    static int score(int r, int c) {
  42       int count = 0;
  43       for (int k=0; k<8; k++) 
  44          if ( B[r+deltaR[k]][c+deltaC[k]]==BLANK ) count++;
  45       return count;
  46       }
  47 
  48    /* Extend the tour, if possible. */
  49    static void Solve() {
  50       int k = CUL_DE_SAC-1;
  51       while ( k!=CUL_DE_SAC ) { 
  52          /* Let k = # of an unvisited neighbor, or CUL_DE_SAC if no such. */
  53             /* Let bestK be neighbor with best score. */
  54                int bestK = CUL_DE_SAC;
  55                int bestScore = 8;
  56                for (k = 0; k<8; k++) {
  57                   if ( B[r+deltaR[k]][c+deltaC[k]]==BLANK ) {
  58                      int s = score(r+deltaR[k], c+deltaC[k]);
  59                      if (s<bestScore) {bestScore = s; bestK = k; }
  60                      }
  61                   }
  62             k = bestK;
  63          if ( k!=CUL_DE_SAC ) {
  64             r = r+deltaR[k]; c = c+deltaC[k]; move++; B[r][c]=move;
  65             }
  66          }
  67       } /* Solve */
  68 
  69    /* Output: Print tour as numbered cells in N-by-N grid of 0s. */
  70    static void Display() { 
  71       for (int r = lo; r<=hi; r++) {
  72          for (int c = lo; c<=hi; c++) 
  73             System.out.print( (B[r][c]+"    ").substring(0,3) );
  74          System.out.println();
  75          }
  76       } /* Display */
  77 
  78    /* Output a (possibly partial) Knight’s Tour. */
  79    static void main() {
  80       /* Initialize: Establish invariant for a tour of length 1. */
  81          Initialize();
  82       /* Compute: Extend the tour, if possible. */
  83          Solve();
  84       /* Output: Print tour as numbered cells in N-by-N grid of 0s. */
  85          Display();
  86       } /* main */
  87 
  88    /* Compute: Extend the tour, if possible, making random moves. */
  89    static void RandomSolve() {
  90       int k = 0;  // Neighbor number.
  91       while ( k != CUL_DE_SAC ) {
  92          /* Let unvisited[0:count-1] be neighbor numbers of the count  



373

  93             unvisited neighbors of ⟨r,c⟩. */
  94             int unvisited[] = new int[8];
  95             int count = 0;  // # unvisited neighbors
  96             for (k = 0; k<8; k++)
  97                if ( B[r+deltaR[k]][c+deltaC[k]]==Blank ) {
  98                   unvisited[count]=k; count++;
  99                   }    
 100          if ( count==0 ) k = CUL_DE_SAC;
 101          else {
 102             k = unvisited[rand.nextInt(count)];
 103             /* Extend the tour to neighbor k. */
 104                move++; r = r+deltaR[k]; c = c+deltaC[k];  B[r][c]=move;  
 105             }
 106          }
 107       } /* RandomSolve */
 108 
 109    /* Perform random Knight’s Tours until finding a solution. */
 110    static void MonteCarlo() {
 111       int freq[] = new int[N*N+1]; // Histogram of Tour lengths.
 112       while (move != 64 ) {
 113          /* Initialize: Establish invariant for a tour of length 1. */
 114             Initialize();
 115          /* Compute: Extend the tour, if possible. */
 116             RandomSolve();
 117          /* Bin the path length. */
 118             freq[move]++;
 119          }
 120       /* Output: Print tour as numbered cells in N-by-N grid. */
 121          Display();
 122       /* Output the histogram freq[1:64]. */
 123          for (int j=1; j<=64; j++) System.out.println( j+" "+freq[j] );
 124       } /* MonteCarlo */
 124    } /* KnightsTour */



374 · Appendix: Running a Maze 



375

APPEnDIx V  
Running a Maze 

   1 /* Abstract datatype for Maze, Rat, and Path. */
   2 import java.util.Scanner;    
   3 class MRP {
   4    /* Maze. Cells of an N by N maze are represented by elements of array
   5       M[2*N+1][2*N+1]. Maze cell  ⟨r,c⟩ is represented by array element
   6       M[2*r+1][2*c+1]. The possible walls ⟨top,right,bottom,left⟩ of the 
   7       maze cell corresponding to ⟨r,c⟩ are represented by Wall or NoWall 
   8       in ⟨M[r 1][c], M[r][c+1], M[r+1][c], M[r][c 1]⟩. The remaining 
   9       elements of M are unused. Lo is 1, and hi is 2*N 1. */
  10       private static int N;      // Size of maze. */
  11       private static int M[][];  // Maze, walls, and path.
  12       private static final int Wall = -1; 
  13       private static final int NoWall = 0; 
  14       private static int lo, hi; // Left/top and right/bottom maze indices.
  15 
  16    /* Rat. The rat is located in cell M[r][c] facing direction d, where a
  17       d of ⟨0,1,2,3⟩ represents the orientation ⟨up,right,down,left⟩, 
  18       respectively. */ 
  19       private static int r, c, d;
  20 
  21    /* Path. When the rat has traveled to cell ⟨r,c⟩ via a given path through
  22       cells of the maze, the elements of M that correspond to those cells will
  23       be 1, 2, 3, etc., and all other elements of M that correspond to cells 
  24       of the maze will be Unvisited. The number of the last step in the path
  25       is move. */
  26       private static final int Unvisited = 0;
  27       private static int move;
  28 
  29    // Unit vectors in direction d =          0,     1,    2,     3 
  30    //                                       up, right, down,  left
  31       private static final int deltaR[] = {  1,     0,    1,     0 };
  32       private static final int deltaC[] = {  0,     1,    0,     1 };
  33 
  34    public static void TurnClockwise() 
  35       { d = (d+1)%4; }
  36 
  37    public static void TurnCounterClockwise() 



376 · Appendix: Running a Maze 

  38       { d = (d+3)%4; }
  39 
  40    public static void StepForward() {
  41       r = r+2*deltaR[d]; c = c+2*deltaC[d];
  42       move++; M[r][c] = move;
  43       }
  44 
  45    public static boolean isFacingWall()
  46       { return M[r+deltaR[d]][c+deltaC[d]]==Wall; }
  47 
  48    public static boolean isUnvisited() 
  49       { return M[r+2*deltaR[d]][c+2*deltaC[d]]==Unvisited; }
  50 
  51    public static boolean isAtCheese() 
  52       { return (r==hi)&&(c==hi); }
  53 
  54    public static boolean isAboutToRepeat()
  55       { return (r==lo&&c==lo)&&(d==3); }
  56 
  57    private static int neighborNumber;    // Recorded visit #.
  58    private static int neighborDirection; // Direction at time of recording.
  59 
  60    public static void RecordNeighborAndDirection () { 
  61       neighborNumber = M[r+2*deltaR[d]][c+2*deltaC[d]]; 
  62       neighborDirection = d; 
  63       } 
  64 
  65    public static boolean isAtNeighbor() 
  66       { return M[r][c]==neighborNumber; }
  67 
  68    public static void RestoreDirection() 
  69       { d = neighborDirection; }   
  70 
  71    public static void StepBackward() {
  72       M[r][c] = Unvisited; 
  73       move  ;
  74       r = r+2*deltaR[d]; c = c+2*deltaC[d];
  75       }
  76 
  77    public static void FacePrevious() {
  78       d = 0;
  79       while ( isFacingWall()||M[r+2*deltaR[d]][c+2*deltaC[d]]!=M[r][c]) d++;
  80       }
  81 
  82    /* Input N, and (2N+1) by (2N+1) values; non BLANKs are walls. */
  83    public static void Input() {
  84       /* Maze. As per representation invariant. */
  85          Scanner in = new Scanner(System.in);
  86          try {
  87             N = in.nextInt(); in.nextLine();
  88             M = new int[2*N+1][2*N+1];
  89             lo = 1; hi = 2*N-1;
  90             for (int r=lo 1; r<=hi+1; r++) {
  91                String line = in.nextLine();
  92                for (int c=lo 1; c <= hi+1; c++)



377

  93                   if ((r%2==1) && (c%2==1)) M[r][c] = Unvisited;
  94                   else if (line.substring(c,c+1).equals(" ")) 
  95                      M[r][c] = NoWall;
  96                   else M[r][c] = Wall;
  97                }
  98             /* Insert any missing walls. */
  99                for (int k=lo; k<=hi; k=k+2) {
 100                   M[lo 1][k] = Wall; M[hi+1][k] = Wall; // top; bottom
 101                   M[k][lo 1] = Wall; M[k][hi+1] = Wall; // left; right
 102                   }
 103             }
 104          catch (Exception e) {
 105             System.out.println("Malformed Input");
 106             System.exit(1);
 107             }  
 108       /* Rat. Set the rat in the upper left cell facing up. Facing up. */
 109          r = lo; c = lo; d = 0;
 110       /* Path. Establish the rat in the upper left cell. */
 111          move = 1; M[r][c] = move;
 112       } /* Input */
 113 
 114    /* Output N by N maze, with walls and path. */
 115    public static void PrintMaze() {
 116       for (int r = lo; r<=hi+1; r++) {
 117          for (int c = lo; c<=hi+1; c++) {
 118             String s;
 119                if ( M[r][c]==Wall ) s = "#";
 120                else if (M[r][c]==NoWall || M[r][c]==Unvisited) s = " ";
 121                else s = M[r][c]+"";
 122                System.out.print((s+"    ").substring(0,3));
 123             }
 124          System.out.println();
 125          }   
 126       } /* PrintMaze */
 127
 128    public static void PrintState(String s) {
 129       System.out.println(s+": "+r+" "+c+" "+d+" "+move);
 130       PrintMaze();
 131       }
 132
 133    /* Return false iff rat’s representation invariant is violated. */ 
 134    public static boolean isValidRat() {
 135      if ( r<0 || r>hi || c<0 || c>hi ) return false;
 136      else if ( d < 0 || d>3 ) return false;
 137      else if ( M[r][c]!=move ) return false;
 138      else return true; 
 139      } /* isValidRat */
 140
 141   /* Return false iff rat reached lower-right cell via an invalid path.*/
 142   public static boolean isSolution() { return isValidPath(hi,hi); }
 143
 144   /* Return false iff rat reached cell ⟨p,q⟩ via an invalid path.*/
 145   public static boolean isValidPath(int r, int c) {
 146      if ( M[r][c]==Unvisited ) return true; // No claim if Unvisited.
 147      else {



378 · Appendix: Running a Maze 

 148       while ( !((r==lo)&&(c==lo)) ) {
 149          /* Go to any valid predecessor; return false if there is none. */
 150             int d = 0;
 151             while ( d<4 && (M[r+deltaR[d]][c+deltaC[d]]==Wall || 
 152                     M[r+2*deltaR[d]][c+2*deltaC[d]] != M[r][c]-1) ) d++;
 153                if (d==4) return false;
 154             r = r+2*deltaR[d]; c = c+2*deltaC[d];
 155             }
 156       return true;
 157       }
 158    } /* isValidPath */
 159
 160    /* Create an N by N maze with walls given by the bits of w. */
 161    public static void GenerateInput(int N, int w) {
 162       /* Maze. */
 163          M = new int[2*N+1][2*N+1];
 164          lo = 1; hi = 2*N 1;
 165          /* Set boundary walls. */
 166             for (int i=0; i<=hi+1; i++)
 167                M[lo 1][i] = M[hi+1][i] = M[i][lo 1] = M[i][hi+1] = Wall; 
 168          /* Set 2*n*(n 1) interior walls to the corresponding bits of w. */
 169             for (int r=lo; r<=hi; r++)
 170                for (int c=lo; c<=hi; c++)
 171                   if ( (r%2==0 && c%2==1)||(r%2==1 && c%2==0) ) { 
 172                      if ( w%2==1) M[r][c] = Wall; else M[r][c] = NoWall; 
 173                      w = w/2;
 174                      }
 175       /* Rat. */
 176          r = lo; c = lo; d = 0;
 177       /* Path. */
 178          move = 1; M[r][c] = move;
 179          } /* GenerateInput */
 180 
 181    } /* MRP */

   1 /* Rat Running Algorithm. */
   2 class RunMaze {
   3    /* Input maze, or reject input as malformed. */
   4    private static void Input() { 
   5       MRP.Input();
   6       } /* Input */
   7 
   8    /* Compute a direct path through the maze, if one exists. */
   9    private static void Solve() {
  10       while ( !MRP.isAtCheese() && !MRP.isAboutToRepeat() )
  11          if (MRP.isFacingWall()) MRP.TurnClockwise();
  12          else if (!MRP.isUnvisited()) Retract();
  13          else {
  14             MRP.StepForward();
  15             MRP.TurnCounterClockwise();
  16             }
  17       } /* Solve */
  18 
  19    /* Unwind abortive exploration. */
  20    private static void Retract() {



379

  21       MRP.RecordNeighborAndDirection();
  22       while ( !MRP.isAtNeighbor() ) {
  23          MRP.FacePrevious();
  24          MRP.StepBackward();
  25          }
  26       MRP.RestoreDirection();
  27       MRP.TurnCounterClockwise();
  28       } /* Retract */
  29 
  30    /* Output the direct path found, or “unreachable” if there is none. */
  31    private static void Output() {
  32       if ( !MRP.isAtCheese() ) System.out.println("Unreachable");
  33       else MRP.PrintMaze();  
  34       } /* Output */
  35 
  36    /* Run a maze given as input, if possible. */
  37    public static void main() {
  38       /* Input a maze, or reject the input as malformed. */
  39          Input();
  40       /* Compute a direct path through the maze, if one exists. */
  41          Solve();
  42       /* Output the direct path found, or “unreachable” if there is none. */
  43          Output();
  44       } /* main */
  45 
  46    /* Generate and solve all mazes of size N, and validate paths found. */
  47    public static void test() {
  48       int N = 3;
  49       for (int i=0; i<Math.pow(2,2*N*(N-1)); i++) {
  50          MRP.GenerateInput(N,i);
  51          Solve();
  52          assert MRP.isValidPath(): "internal program error";
  53          }
  54       System.out.println( "passed" );
  55       } /* test */
  56 
  57    } /* RunMaze */



380 · Appendix: Enumerating Rationals



381

APPEnDIx VI  
Enumerating Rationals

   1 /* Pairs. */
   2 public class Pair<K,V> {
   3    protected K key;
   4    protected V value;
   5    /* Constructor. */
   6       public Pair(K k, V v) { key = k; value = v; }
   7    /* Access. */
   8       public K getKey()   { return key; }
   9       public V getValue() { return value; }
  10   /* Equality. */
  11       @Override 
  12       public boolean equals(Object q) { 
  13          if (q==null) return false;
  14          if (q==this) return true;
  15          if ( !(q instanceof Pair) ) return false;
  16          Pair qPair = (Pair)q;
  17          return key.equals(qPair.key) && value.equals(qPair.value);
  18          }
  19    /* String representation of this. */
  20    public String toString() { return "<" + key + "," + value + ">"; }
  21    } /* Pair<K,V> */
     
     
   1 /* Fractions. */
   2 public class Fraction extends Pair<Integer,Integer> {
   3    /* Constructor */
   4    public Fraction(int numerator, int denominator) {
   5       super(numerator, denominator); // Apply the Pair constructor.
   6       assert denominator!=0: "0 denominator";
   7       }
   8    /* Access. */
   9       public int getNumerator()   { return key; }
  10       public int getDenominator() { return value; }
  11    /* String representation of this. */
  12       @Override 
  13       public String toString() { return key + "/" + value; }
  14    } /* Fraction */



382 · Appendix: Enumerating Rationals

     
     
   1 /* Rationals. */
   2 public class Rational extends Fraction {
   3    /* Constructor */
   4    public Rational(int numerator, int denominator) {
   5       super(numerator, denominator); // Apply the Fraction constructor.
   6       int g = gcd(numerator,denominator);
   7       key = numerator/g;
   8       value = denominator/g;
   9       }
  10    /* Euclid’s Algorithm. */
  11       private static int gcd(int x, int y){
  12       while ( x!=y )
  13          if ( x>y ) x = x-y;
  14          else y = y-x;
  15       return x;
  16       } /* gcd */
  17    /* String representation of this. */
  18    @Override
  19    public String toString() { 
  20       if ( value==1 ) return key + "";   // this as int
  21       else return super.toString();      // this as Fraction
  22       }
  23    } /* Rationals */
     
     
   1 /* ArrayLists. */
   2 public class ArrayList<E> {
   3    private E A[];     // ArrayList elements are in A[0..size-1].
   4    private int size;  // The default value is 0.
   5    /* Utility */
   6       private void checkBoundExclusive( int k ) { 
   7          if (k>=size) throw new IndexOutOfBoundsException( "≥size" );
   8          }
   9       private void checkBoundInclusive( int k ) { 
  10          if (k>size) throw new IndexOutOfBoundsException( ">size" );
  11          }
  12    /* Constructors. */
  13       public ArrayList( int m ) {
  14          if ( m<0 ) throw new IllegalArgumentException();
  15          A = (E[]) new Object[m];
  16          }
  17       public ArrayList() { this( 20 /* DEFAULT_SIZE */ ); } 
  18    /* Capacity. */
  19       public void ensureCapacity( int minCapacity) {
  20          int currentLength = A.length;
  21          if ( minCapacity > currentLength ) {
  22             E[] B = (E[]) new Object[Math.max(2*currentLength, minCapacity)];
  23             for ( int k=0; k<size; k++ ) B[k] = A[k]; 
  24             A = B;
  25             }
  26          }
  27    /* Size. */
  28       public int size() { return size; }



383

  29       public boolean isEmpty() { return size==0; }
  30    /* Access. */
  31       public E get(int k) { checkBoundExclusive(k); return A[k]; }
  32       public E set(int k, E v) {
  33          checkBoundExclusive(k);
  34          E old = A[k];
  35          A[k] = v;
  36          return old;
  37          }
  38    /* Insertion / Deletion. */
  39       public void add(E v) {
  40            if ( size==A.length ) ensureCapacity( size+1 );
  41          A[size] = v; size++;
  42          }
  43       public void add(int k, E v) {
  44          checkBoundInclusive(k);
  45          if ( size==A.length ) ensureCapacity( size+1 );
  46          for (int j=size; j>k; j--) A[j] = A[j-1];
  47          A[k] = v;
  48          size++;
  49          }
  50       public E remove(int k) {
  51          checkBoundExclusive(k);
  52          E old = A[k];
  53          size--;
  54          for ( int j=0; j<size; j++ ) A[j] = A[j+1];
  55          return old;
  56          }
  57     /* Membership. */
  58        public int indexOf(Object v) {
  59           int k = 0;
  60           while ( (k<size) && !v.equals(A[k]) ) k++;
  61           if ( k==size ) return -1; else return k;
  62           }
  63        public boolean contains(Object v) { return indexOf(v)!=-1; }
  64     } /* ArrayList */
     
     
   1 /* Unbounded enumeration of positive rationals. */
   2 import java.util.*;
   3 public class EumerateRationals {
   4    /* Output reduced fractions, i.e., unique positive rationals.*/
   5    public static void main() {
   6       ArrayList<Rational>  reduced = new ArrayList();
   7       /* Can substitute: HashSet<Rational> reduced = new HashSet(); */
   8       int d = 0;
   9       while ( true ){
  10          int r = d;
  11          for ( int c=0; c<d; c++ ) {
  12             /* Let z be the reduced form of the fraction r/(c+1). */
  13                Rational z = new Rational(r, (c+1));
  14             if ( !reduced.contains(z) ) {
  15                System.out.println( z );
  16                reduced.add(z);
  17                }



384 ·  Appendix: Enumerating Rationals

  18             r--;
  19             }
  20          d++;
  21          }
  22       } /* main */
  23    /* Time the enumeration of 100,000 rationals */
  24    public static void timing() {
  25       ArrayList<Rational>  reduced = new ArrayList();
  26       /* Can substitute: HashSet<Rational> reduced = new HashSet(); */
  27       long startTime = System.currentTimeMillis();
  28       int rCount = 0; // # of rationals so far.
  29       int d = 0;
  30       while ( rCount<100000 ){
  31          int r = d;
  32          for ( int c=0; c<d; c++ ) {
  33             /* Let z be the reduced form of the fraction r/(c+1). */
  34                Rational z = new Rational(r, c+1);
  35             if ( !reduced.contains(z) ) {
  36                /* System.out.println( z ); */
  37                reduced.add(z);
  38                rCount++;
  39                if ( rCount%10000==0 )
  40                   System.out.println(
  41                      System.currentTimeMillis()-startTime
  42                      );
  43                }
  44             r--;
  45             }
  46          d++;
  47          }
  48       } /* timing */
  49    } /* EnumerateRationals */



385

APPEnDIx VII  
Exercises

Exercises reveal your ability to apply the techniques presented in the text, and help 
you build skills. 

Some of the following exercises ask you to compare running times of 
alternative codes on a computer. Use the standard Java timing function 
System.currentTimeMillis to get the time in milliseconds before and after 
execution of code: 

long startTime = System.currentTimeMillis();
   ⟨Code to be timed⟩
long elapsed Time = System.currentTimeMillis()-startTime;

Introduction
Exercise 1.  Describe the difference between a skilled crafts-person's use of tools, 
and a novice’s use of tools. Draw an analogy with programming, and the facility you 
hope to acquire.
Exercise 2.  What are similarities and differences between the notions of adage, 
admonition, aphorism, diktat, edict, maxim, moral, motto, precept, principle, rule, 
saying, and suggestion? Is “precept” the best term for the list in Appendix I?
Exercise 3.  What are similarities and differences between the notions of motif, pat-
tern, plan, and template? Is “pattern” the best term for the list in Appendix II?
Exercise 4.  The text illustrates asking probing questions about the Running a Maze 
problem in order to thoroughly understand it before coding. Do likewise for the 
Ricocheting Bee-Bee problem.
Exercise 5.  Forward reasoning and backward reasoning are two approaches to 
problem solving. Forward reasoning starts at an initial state, and attempts to reach a 
goal state; backward reasoning starts at the goal state, and attempts to see how one 
might have gotten there from the initial state. Does backward reasoning offer any 
advantage for running a maze (even if it does not correspond to what a rat would 
do)? Geometric symmetry is the property whereby a rigid transformation of a shape 
leaves it unchanged. List the ways in which a maze is symmetric. Use symmetry to 
argue that backward reasoning cannot offer any advantage over forward reasoning 
for solving a maze.



386 ·  Appendix: Exercises

Exercise 6.  The text argues for a highly-controlled and methodical style of coding, 
and advocates for an approach to coding in which you aspire to never take a misstep, 
and never write code that must be redone. Is this goal realistic, or is it a pompous con-
ceit? Can you make a case for trial-and-error coding, and its possible advantages? 
Exercise 7.  Can problem analysis be systematic, or is it necessarily a chaotic explo-
ration? One is reminded of the somewhat clawing aphorism: “Tidy desk, tidy mind”, 
to which Einstein apocryphally said [29]: “If a cluttered desk is a sign of a cluttered 
mind, of what, then, is an empty desk a sign?” What does this suggest about creative 
exploration?
Exercise 8.  Let n be an int variable that contains a positive integer. Implement the 
following specification: 

/* Output the sum of the first n odd integers. */

For example, if n is 1 output 1, if n is 2 output 1+3, which is 4, etc. Be sure to analyze 
the problem before writing the code.
Exercise 9. The text’s approach to the Integer Square Root problem involved a key 
decision: Iterate through the integers, one by one, in sequence:

/* Let r be the integer part of the square root of n≥0. */
   int r = 0;
   while ( condition ) r++;

Explicitly modeling the code on the expression Math.floor(Math.sqrt(n)) 
would have been an alternative approach:

/* Let r be the integer part of the square root of n. */
   /* Let float variable root be the square root of n≥0. */
   int r = (int)root; // Let r be the integer part of root.

Review the literature on computing square roots, e.g., the Babylonian method [30], 
and discuss the relative merits of alternative approaches. How does this example 
inform you about the care you should take on each coding decision?

Prerequisites
Exercise 10.  Define each of the concepts and constructs in Chapter 2 in your own 
words, being as precise and succinct as you can, i.e., treat the chapter’s contents as a 
set of flashcards, and convince yourself that you can define each term.
Exercise 11.  Clearly, a good vocabulary is important for communications, but 
what is the role of vocabulary in thought itself [32]? Is a good vocabulary ever a 
hindrance?
Exercise 12.  Is the following a syntactically correct English sentence?

Colorless green ideas sleep furiously [33].

Each word has a well-defined meaning, but is the whole utterance a semantically cor-
rect English sentence? Write a program fragment that is similar to the given sentence 
in terms of its syntactic correctness, and its semantic incoherence.



Prerequisites · 387

Exercise 13.  Is 2021 even or odd? How did you decide? Which of the following 
two algorithms did you use?

A: Divide by two and if the remainder is zero, it’s even, and otherwise it’s odd.
B: If the last digit is 0, 2, 4, 6, or 8, it’s even, and otherwise it’s odd.

Suppose a value is provided as input data to a computer program. Which algorithm 
should the program use to determine whether the value is even or odd? Why? 
Exercise 14.  In Mathematics, a function f is a single-valued mapping from a domain 
Dom to a range Ran. Symbolically, we write f: Dom→Ran. A function f is applied to 
x, a value in Dom, to produce f(x), a value in Ran. For example, the square function 
sq:Z→N maps integers in Z to natural numbers in N, e.g., sq(2) is 4, and sq(-3) is 9.

The graph of a function f: Dom→Ran is the set of ordered pairs:

{ ⟨d,r⟩ | d in Dom and r is the unique element in Ran such that f(d)=r }

The graph of a function is called the function in extension. If the graph of a function 
is finite, it can be defined in extension by an explicit enumeration of pairs, e.g., one 
can define a function by:

{ ⟨0,0 ⟩, ⟨1,1⟩, ⟨2,4⟩, ⟨3,9⟩ } 

If the graph of the function is not finite, we may resort to ellipses, e.g., the function 
sq is

{ …, ⟨-3,9⟩, ⟨-2,4⟩, ⟨-1,1⟩, ⟨0,0⟩, ⟨1,1⟩, ⟨2,4⟩, ⟨3,9⟩, … }

but the ellipses are really an appeal to an unstated rule; ellipses say “You know what 
I mean; apply the rule”.

A function that is defined by a rule is known as a function in intension. For exam-
ple, the rule sq(z)=z × z is an intentional definition of the square function. Such a 
definition is a recipe for how to compute the mapping sq applied to a value z in ℤ: 
Multiply z times itself. 

In Mathematics, the right side of an intentional function definition (the definiens) 
is a closed-form expression, i.e., a finite composition of known operations like +, −, 
×, ÷, and exponentiation with rational powers. The language of expressions that are 
allowed in the definiens is established by convention and context, e.g., algebraic 
expressions, although the exact set of operations is often implicit.

In Computer Science, functions are defined intentionally using a program-
ming language, e.g., Java or Intel x86 machine code. We use boldface to distinguish 
between the mathematical function, f, and a program that defines the function inten-
tionally, f.

In diagrams [34], we depict three aspects of the program f: its input domain 
Dom, its output range Ran, and the language in which the program is implemented 
L, as shown.

In diagrams, we depict a computer that is capable of executing a program imple-
mented in language L as a lens-like box whose concave left edge matches the convex 
lower-right edge of a program implemented in language L, as shown.

Execution of program f by an L computer in an environment where the input 

Dom Ran

x f(x)
f

2 4

sq-3 9

RanDom

L

f

L



388 ·  Appendix: Exercises

data is x, and that produces output data f(x) is depicted by composing the diagrams 
for those entities, as shown:

For a concrete example, let sq be the following Java program that squares a 
numerical input:

/* Output the square of input z. */
public static void sq() {
   int z = in.nextInt();
   System.out.println(z*z);
   }

We depict sq running on a Java computer, given input 2, and producing output 4, in 
the diagram, as shown.168

PCs don’t understand Java; rather, they understand Intel x86 machine code. 
Accordingly, our Java program must first be translated to Intel x86 before it can be 
applied to input 2 on a PC. The program that per-
forms the translation is known as a compiler. 
Paraphrase the diagram shown to the right in your 
own words.

Typically, compilers are written in high-level 
programming languages, not machine code. Where 
then did compiler J (that can be executed by an x86 
computer) come from? Extend the diagram above 
to explain your hypothesis.
Exercise 15.  Exercise 14 simplifies the story of what a Java compiler really does. 
Specifically, rather than translating a Java program to machine code (like Intel x86), 
a Java compiler actually translates to so-called byte codes for a fictitious computer 
called the Java Virtual Machine ( JVM). How then does a program written in JVM 
byte code get executed on an x86 computer? A byte-code program is “executed” on 
a real computer by a program called an interpreter, which is a program that (while 
running on an L computer) acts like an L′ computer. An interpreter is said to emulate 
one computer on another. In the following diagram, the interpreter I is the compo-
nent that is colored pink. 

Paraphrase the following diagram in your own words. Because of its vital role in 
efficiently executing Java pro-
grams (as translated to JVM), 
the interpreter I is likely to 
have been implemented in the 
C programming language. 
Extend the diagram above to 
show the lineage of interpreter 
I (depicted in pink) that runs 
on an x86 computer.

168. We have simplified the discussion by omitting the distinction between mathematical 
integers and natural numbers (symbolized by ℤ and ℕ), and decimal numerals that may be 
input into a Java program, converted to 32-bit two’s complement binary integers, stored in an 
int variable, squared, and output as a decimal numeral. How do the diagrams change if you 
make this distinction?

f(x)

L

RanDom

L

f

x

4

JavaJava

sq

2

x86

4

x86

x86Java

x86

J

Java

sq

x86

sq

2

x86

JVM

x86
I

4

x86

JVMJava

x86

J

Java

sq

JVM

sq

2



Specifications and Implementations · 389

Specifications and Implementations
Exercise 16.  What is the difference between the following two specifications?

/* Rearrange values of A[0..n-1] into non-decreasing order. */
/* Set A[0..n-1] so that its values are in non-decreasing order. */

Write trivial code that implements the second specification literally, but that sub-
verts its obvious intent.
Exercise 17.  For each of the following descriptions, write a precise specification:

• Assume that 2-D arrays A and B have the same size. Set the variable same to true, 
and then run over A and B in row-major order, and if any ⟨r,c⟩ pair is found 
such that A[r][c]!=B[r][c], set same to false, and stop the iteration. 

• Are two lines given in slope-intercept form perpendicular?
• Reduce a fraction.
• Factor a number.
• Factor a polynomial of degree 2.

Exercise 18.  The United States has a bicameral Congress consisting of a Senate and 
a House of Representatives. Each of the fifty states has two Senators; thus, there are 
a hundred Senators, in all. The House consists 435 Representatives apportioned to 
the states “fairly” based on their respective populations. The following specification 
is clearly too vague, and is therefore deficient:

/* Apportion 435 Representative seats to 50 states fairly. */

The following improvement clarifies input-output requirements, but is still deficient 
because the notion of “fair” remains too vague:

/* Given state[0..49], where state[s] is the population of state s, set
   reps[0..49] fairly, where reps[s] is the number of seats apportioned to
   state s. */

If fractional politicians were allowed, a precise specification would be simple:

/* Given float array state[0..49], where state[s] is the population of state
   s, set float array reps[0..49] s.t. reps[s]==state[s]/N, for each state s,
   where N is the total population of the country. */

Alas, we are not allowed to dismember politicians. Reflect on fairness in apportion-
ment, and write a specification that corresponds to your notion. See the Internet for 
notions of fairness that have been used historically [35].

Stepwise Refinement
Exercise 19.  Stepwise Refinement is intrinsically associated with top-down pro-
gramming, i.e., repeatedly refining a specification given “at the top” until no further 
specifications remain unrefined. What are the strongest arguments you can make 
for bottom-up, as opposed to top-down, programming, i.e., repeatedly combining 
program fragments given “at the bottom” until code for the complete problem is 
obtained?



390 ·  Appendix: Exercises

Exercise 20.  In Algebra, you learn to factor expressions using the laws:

(a*c)+(b*c) ⇒ (a+b)*c  (right Distributive Law)
(c*a)+(c*b) ⇒ c*(a+b)  (left Distributive Law)

In words, we say: Multiplication distributes over addition. Analogously, in program-
ming, we say: Sequential execution distributes over conditional execution.

State the right and left Distributive Laws for programming. Hint: Think of 
sequential and conditional execution as expressed by binary operators “;” and “if 
condition else”, where given statements S1 and S2, statement “S1;S2” performs one 
statement after the other, and “S1 if condition else S2” performs one statement or the 
other. In Algebra, both right and left Distributive Laws hold for all a, b, and c. In con-
trast, in programming, the left Distributive Law has a side condition that restricts its 
applicability. What is it? Describe the analogue in programming of factoring, and 
describe how you might use it effectively in the course of Stepwise Refinement?
Exercise 21.  “Pump priming” is often required for a hand pump to work: Before you 
start to pump, you pour a little water into the pump to tighten its seal. What about 
an Iterative Refinement is analogous to pump priming?
Exercise 22.  Chapter 1 developed this code fragment:

/* Given n≥0, output the integer part of the square root of n. */ 
   /* Let r be the integer part of the square root of n≥0. */
      int r = 0;
      while ( (r+1)*(r+1) <= n ) r++;
   System.out.println( r );

What are the invariant and variant for its indeterminate-enumeration loop? 
Chapter 3 (p. 49) introduced assert-statements as a way to check that certain 
required conditions hold during program execution. Define boolean method 
invariantHolds(r,n) to complete this modified code:

/* Given n≥0, output the integer part of the square root of n. */ 
   /* Let r be the integer part of the square root of n≥0. */
      int r = 0;
      while ( (r+1)*(r+1) <= n ) {
         assert invariantHolds(r,n): "invariant failure";
         r++;
         }
   assert invariantHolds(r,n): "invariant failure";
   System.out.println( r );

Exercise 23.  An approach to driving from LA to NYC would travel from capital to 
capital of adjoining states:

/* Drive from LA to NYC. */
   /* Drive from LA to Sacramento. */
   while ( /* not in Albany */ ) {
      /* Let c be the capital of a suitably-chosen adjoining state. */
      /* Drive to c. */
      }
   /* Drive from Albany to NYC. */

North Carolina

Carolina            Georgia

Florida

Alabama

Tennessee 

Miss
iss

ippi

Kentucky 
Virginia

Wes
t

Vi
rg

in
ia

Ohio

In
di

an
a

Illinois

Pennsylvania 

New
York

Maine
Vermont

New Hampshire

Massachusetts 

Rhode Island
Connecticut

New Jersey

Delaware

Maryland

Michigan 

Wisconsin 

Louisiana 

Texas

New
Mexico

Colorado

Arizona

Utah

Nevada

California

Washington

Oregon

Idaho

North
Dakota

South
Dakota

Montana

Wyoming

Nebraska

Kansas

Oklahoma 

Minnesota 

Arkansas

Missouri 

Iowa

Alaska

Hawaii

Austin

Raleigh

Sacremento
Carson City

Salem

Olympia

Helena

Boise

Salt
Lake City

Denver

Oklahoma
City

Little
Rock

Baton
Rouge

Santa
Fe

Phoenix

 Cheyenne 

Lincoln

 Bismarck

 Pierre

St.
Paul

Madison

Lansing

 Columbus

 In
di

an
ap

ol
is

Springfield

Des Moines

Topeka

Jefferson
City

Frankfurt
Richmond

 Charleston

 Harrisburg

Albany

Augusta

Boston

 Providence

 Hartford

Trenton

 Dover

 Montpelier

 Concord

 Annapolis

Nashville

Atlanta

 Montgomery

 Tallahassee

 Columbia

Juneau

Honolulu

       South            

Jackson



Stepwise Refinement · 391

Define “suitably-chosen” so that the algorithm works. Given your definition, what 
are the invariant and variant of the loop?
Exercise 24.  Consider the following Iterative Refinement:

/* Get from Tokyo to NYC. */
   /* Establish INVARIANT: In USA. */
      /* Fly from Tokyo to LA. */
   while ( not in NYC )
      /* Drive one mile closer to Manhattan. */

and ponder:
• Does the loop body preserve the INVARIANT?
• Does the loop body necessarily reduce a loop variant on each iteration, or must 

it be modified to do so?
• What is the set of endpoints in NYC that this algorithm cannot reach?
• What is the effect of under-specification in this code? For example, (a) we don't 

say exactly where in LA we land; and (b) we don't say how the loop body breaks 
ties, or whether we must stay on roads.

The answers depend on the specific shape of the USA, but we suggest that you not 
try to answer accurately. Rather, consider hypothetical USA geographies that illus-
trate possible answers you are considering.
Exercise 25.  The text defines a recursive method:

/* Count down from n, and say "BLASTOFF" at zero. */
void countdown(int n) {
   if ( n==0 ) System.out.println( "BLASTOFF" );
   else {System.out.println( n ); countdown(n-1); }
   }

What is the effect on the output of reversing the order of the two statements:

{ System.out.println(n); countdown(n-1); }

Exercise 26.  The Fibonacci sequence is defined to start with two 1s, and thereaf-
ter each number in the sequence is the sum of the two previous numbers, e.g., 1, 1, 
2, 3, 5, 8, 13, …. The following recursive function hews closely to the definition:

/* Return the kth Fibonacci number. */
static int fib( int k ) {
   if ( k<=1 ) return 1;
   else return fib(k-2)+fib(k-1);
   }

How many times will the function fib be invoked to compute fib(n)? Implement 
fib using iteration rather than recursion.
Exercise 27.  Euclid’s Algorithm sometimes performs multiple consecutive sub-
tractions of the same smaller value from the larger value. Nicomachus observed that 
these consecutive subtractions can be replaced by computing the remainder (%) of 
the larger divided by the smaller. Write code for the Nicomachus gcd algorithm, and 
measure its performance advantage over Euclid’s Algorithm by comparing their run-
ning times for a range of different arguments.



392 ·  Appendix: Exercises

Exercise 28.  Write a program that reads input integer n, and tests the correctness of 
the Collatz Conjecture for all values between 1 and n. The program should be self-pro-
tective in the sense that if the test for some integer k would encounter an arithmetic 
overflow, a warning message is emitted stating that the test is incomplete for k.
Exercise 29. The text states that whether a loop terminates may be not merely 
unknown, but may be unknowable [13]. Here we consider a related claim: There is 
no program P that can inspect an arbitrary program s given as input, and determine 
whether s would terminate or not when given a copy of itself as input text. The proof 
of this statement is by contradiction, i.e., we show that the existence of program P 
would lead to logical nonsense.

Suppose there were such a program P. Without loss of generality, it could have 
this form:

static void P( ) {
   Scanner in = new Scanner(System.in);
   String s = in.nextLine();
   /* Let boolean h be true iff s halts when given input s. */
   if ( h ) System.out.println("halts");
   else System.out.println("runs forever");
   }

where P assumes that the text of the program s that is to be tested has been placed 
all on one line in the input data. If P exists, then program P′ (a simple modification 
of P) would also have to exist:

static void P′( ) {
   Scanner in = new Scanner(System.in);
   String s = in.nextLine();
   /* Let boolean h be true iff s halts when given input s. */
   if ( h ) while (true);
   else System.out.println("runs forever");
   }

where “while(true);” is an infinite loop.
Now run program P′ on a copy of itself as input data. What happens? Specifically, 

does it halt (after printing  “runs forever”), or does it run forever, and never print 
anything?
Exercise 30. In discussing the design of loop variants and invariants, the text dis-
cusses the benefits of micro-operations (p. 91). There is an interesting historical 
parallel in the field of computer design. Recall that a machine-code program itera-
tively fetches and executes instructions from memory (p. 21). In an early period 
of computers, it was thought that complex instructions were better than simple 
instructions because this would allow the processor to get more done each time 
around the fetch-execute loop [36]. Such a computer is termed CISC (Complex 
Instruction Set Computer). A later innovation took the opposite point of view that 
less complex instructions are better because this greatly simplifies the hardware 
that implements instructions [37]. Such a computer is termed RISC (Reduced 
Instruction Set Computer). Read the history of RISC vs CISC. What do you learn 
about the design of loops from this analogy?



Online Algorithms · 393

Online Algorithms
Exercise 31.  The Cutting Stock problem is introduced in Exercise 71, where the 
possibility of distinct online and offline solutions is mentioned. Devise sample input 
data to illustrate that an offline algorithm may be able to fit more pieces from a given 
stock than an online algorithm, i.e., that being greedy is sometimes suboptimal.
Exercise 32.  The text develops an online algorithm for run encoding whereby n 
occurrences of a repeated value r are represented by the pair of values ⟨r,n⟩. Discuss 
generalizations of this idea that would find more complicated patterns of repeated 
occurrences, and represent them compactly. Google “data compression”, read arti-
cles found, and implement some of the ideas described.

Enumeration Patterns
Exercise 33.  Write a program that demonstrates that the largest positive int value 
is 231-1, and that incrementing that number yields -231.
Exercise 34.  Write a program that discovers the largest positive int value that can 
be represented (as if you didn’t know that it is 231-1).
Exercise 35.  Write a program that inputs two positive integers, each no larger than 
231-1, and outputs their average. Demonstrate that your program works correctly for 
inputs 2,147,483,645 and 2,147,483,647. These are the third largest positive int (i.e., 
231-3) and the largest int (i.e., 231-1), and their average should be 2,147,483,646.
Exercise 36.  Write a program that enumerates all int values in increasing order, 
starting at the most negative value.
Exercise 37.  Write a program that enumerates all int values in decreasing order, 
starting at the most positive value.
Exercise 38.  Write a program that inputs positive integer N, and outputs a table of 
(j-1)%N and (j+n-1)%N, for j ranging from -2*N to +2*N.
Exercise 39.  Write a program that inputs a positive integer N, and outputs the indi-
vidual decimal digits of N in the reverse order, e.g., given input 12345, the program 
outputs 54321. Hint: This exercise can be thought of as an application of the equa-
tion that is central to Horner’s Method for polynomial evaluation:

a0+a1·x1+a2·x2+ a3·x3+ ... +an·xn = a0+x·(a1+x·(a2+x·(a3+ ...+x·(a(n-1)+x·an)…)))

You may wonder: What does this have to do with the digits of a decimal numeral? 
Recall that the meaning of decimal numeral is given by (either side of) the equation 
above when x is 10. Accordingly, you can code the exercise using integer division 
(“/”) and modulus (“%”).
Exercise 40.  Write a program that inputs a positive integer N, and outputs the indi-
vidual decimal digits of N in the same order separated by blanks, e.g., given input 
12345, the program outputs the digits: 1 2 3 4 5. Hint: This is similar to the pre-
vious exercise, but the digits must be printed in the same order, not the reverse order. 
Ironically, this is harder because the individual digits naturally “peel off ” from right 
to left. This is a good opportunity for a recursive procedure, which can be used to 
reverse orders as execution emerges from recursion.
Exercise 41.  A perfect number is a positive integer that is equal to the sum of its 



394 ·  Appendix: Exercises

divisors, e.g., 6 is perfect because it is equal to 1+2+3. Write a program that inputs 
a number and outputs whether or not the number is perfect.
Exercise 42.  Each stanza (other than the first) of the cumulative song The Twelve 
Days of Christmas builds on the previous stanza [38]:

On the first day of Christmas, my true love sent to me
A partridge in a pear tree.
On the second day of Christmas my true love sent to me
Two turtle doves, and a partridge in a pear tree.
On the third day of Christmas, my true love sent to me
Three French hens, two turtle doves, and a partridge in a pear tree.
Etc.

Write a short program that interprets data provided in arrays, and outputs the song. 
You may find it useful to know that the code:

String[] S = { "first", "second", "third" };

declares S to be an array of length 3 containing the text “first”, “second”, and “third”.
Exercise 43.  Mathematician Gregor Cantor introduced the notion of the size of 
an infinite set, defining a countable set to be one whose elements can be itemized 
on numbered lines, i.e., 0, 1, 2, …. All countable sets are said to have the same size. 
What does the Enumeration of Rationals problem illustrate about the size of ℚ, the 
set of rationals? 
Exercise 44.  Let Σ be a finite alphabet, e.g., Σ = {a,b,…,z,A,B,…,Z,0,1,…,9}. Write 
a program that enumerates Σ*, which is defined to be the infinite set of all finite 
sequences of symbols in Σ. Think of Σ* as all sequences of length 0, e.g., “”, followed 
by all sequences of length 1, e.g., “a”, “b”, …, “9”, followed by all sequences of length 
2, e.g., “aa”, “ab”, …, “a9”, “ba”, “bb”, …, “b9”, …, “9a”, “9b”, …, “99”, etc. 
Exercise 45.  Gregor Cantor proved in 1891 that the size of the set of all mathemat-
ical functions f: ℕ→ℕ is not countable, i.e., that the set of functions that map ℕ to 
ℕ is a fundamentally larger set than the set ℕ itself [39]. Let Σ be the finite alphabet 
of symbols that can appear in the text of Java code, and consider JF, the subset of Σ* 
consisting of all programs of the form:

/* Compute f: ℕ→ℕ */
public static int F(int x) {
      int y;
      ⟨Program text that assigns f(x) to y.⟩
      return y;
      }

Is set JF countable? What does this observation say about the ability to compute any 
possible mathematical function f: ℕ→ℕ? (To dispel any concern about the restric-
tion of int variables to 32-bit integers, imagine replacing int in the above code 
template with an implementation of bignum, i.e., unboundedly-large integers.)



Sequential Search · 395

Sequential Search
Exercise 46.  Write a program that uses a library timing function to compare the 
worst-case efficiency of sequential search with and without sentinels, i.e., study the 
performance of

/* Let k be an index in A[0..n-1] containing v, or n if no v in A. */
   int k = 0; while ( k<n && A[k]!=v ) k++;

versus:

/* Let k be an index in A[0..n-1] containing v, or n if no v in A. */
   int temp = A[n]; A[n] = v;
   int k = 0; while ( A[k]!=v ) k++;
   A[n] = temp;
   if ( k==n-1 && A[k]!=v ) k=n;

Exercise 47.  A popular way to write Sequential Search is 

for (int k=0; k<n; k++) if ( A[k]==v ) break;

where the construct break terminates execution of the for-loop and continues at the 
next sequential statement thereafter. Add this style of writing Sequential Search into 
the timing analysis of the previous exercise. How does it compare with the forms 
studied there?
Exercise 48.  The performance of Sequential Search can be improved by moving 
frequently-sought values earlier in the array. One way to do this is by moving found 
values earlier, e.g., 

/* Given array A[0..n-1], n≥0, and value v, let k be smallest non-
   negative integer s.t. A[k]==v, or let k==n if there are no
   occurrences of v in A. As a side-effect of the search, move a value
   that has been found to be one earlier in array A. */
   int k = 0;
   while ( k<n && A[k]!=v ) k++;
   if ( k<n && k!=0 ) {
      /* Swap A[k-1] and A[k]. */
         int temp = A[k-1]; A[k-1] = A[k]; A[k] = temp;
      k--;
      }

Use a library timing function to study the effectiveness of this self-organizing tech-
nique. You will have to generate various distributions of search arguments for your 
study.
Exercise 49.  The text implements primality testing for an individual integer p using 
Sequential Search for the smallest divisor of p greater than 1 (p. 130). The text also 
implements the Sieve of Eratosthenes, which computes all primes up to n (p. 119). 
Suppose you know, in advance, the number of individual primality tests that will 
be executed. Under what circumstance is it advantageous to precompute the Sieve 
of Eratosthenes, and then replace individual primality tests with table lookups?
Exercise 50.  The mode of a collection of values is a most-frequent value in the 



396 ·  Appendix: Exercises

collection. Chapter 5 illustrated various ways to process a collection of grades in the 
range 0 to 100: print, count, average, max, and frequency distribution. Implement 
an additional statistic for that application: Mode.
Exercise 51.  A nonempty closed integer interval is a set of consecutive integers from 
lo to hi (inclusive), where lo≤hi. Call hi-lo+1 the width of the interval, and generalize 
the notion of mode (for a finite collection of integers), as follows: A peak of width w 
is the closed integer interval of width w that contains the most elements of the col-
lection. Generalize your solution for Exercise 49 so that it outputs the peak grade 
interval of width w, where w is provided as a defined constant of the program. 

Binary Search
Exercise 52.  Chapter 1 used Sequential Search for the Integer Square Root prob-
lem (p. 12). Use Binary Search instead.
Exercise 53.  The implementation of binary search in the text doesn’t bother to check 
whether the midpoint value is exactly equal to v, in which case the iteration could 
stop. Would this be a worthwhile addition to the code, or not?
Exercise 54.  Dictionaries often have a thumb index, i.e., notches along the fore edge 
of the book labeled A-Z that provide for direct access to the words that begin with 
the given letter. Would a thumb index associated with an ordered array be a useful 
innovation, or would it be of little value? 

One-Dimensional Array Rearrangements
Exercise 55.  Pascal’s Triangle has 1s down the left and right sides, and values in the 
interior that are the sum of the two values that are diagonally above-left and above-
right, e.g., 3 is 1+2. Output n rows of Pascal’s Triangle using only a one-dimensional 
array A, and updating it in situ. Assume n>0.
Exercise 56.  A perfect shuffle of two ordered lists of n values alternately inter-
leaves their values. Write a program segment that given int arrays A[0..n-1] 
and B[0..n-1], creates int array C[0..2*n-1] containing the perfect shuffle 
of A and B. Performing a perfect shuffle of the left and right halves of a single array 
A[0..2*n-1] in situ is far more difficult.

Median
Exercise 57.  Implement the worst-case linear-time median algorithm, as described 
in the text, starting from QuickSelect. Specifically, replace the line:

int p = /* value of pivot */ ;

with code to (a) rearrange values in A[L..R] so that the medians of each group 
of 5 elements are moved to contiguous locations in A, and (b) recursively call 
QuickSelect on those medians to find the median of medians, and assign it to p. 
To facilitate the recursive call, you will find it useful to restore L and R to be param-
eters of QuickSelect rather than as local variables of its body.
Exercise 58.  Let T(n) be the running time of the worst-case linear-time median 
finding algorithm. Show that T(n) is bounded by c·n, for some constant c, i.e., that 
the algorithm’s running time is really linear in n. Start from the observation that T(n) 

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1



Sorting · 397

≤T(n/5)+T(n·7/10)+k·n, for some constant k. In this formula, the term T(n/5) 
refers to the time to compute the median of medians, the term T(n·7/10) refers to 
the computation time on the reduced region, and term k·n refers to the time to par-
tition an array of n items [40].

Sorting
Exercise 59.  The schematic diagrams for QuickSort and MergeSort presented in 
Chapter 11 are not “loop invariants”; in fact, there are no loops in sight. You can 
view them as conditions that hold, but where exactly in the code do they hold? Said 
another way, if you were to insert assert-statements into the code to confirm the 
validity of the diagrams, where would you place those assertions?
Exercise 60.  Write code that given integer n initializes array A[0..n-1] with a 
sequence of n values that are pessimal for the running time of QuickSelect when 
its pivots are computed as suggested in the text, i.e., as (A[L]+A[R])/2.
Exercise 61.  Write code that given two arrays, A[0..n-1] and A′[0..n′-1], 
each in non-decreasing order, determines the median of the collection of the n+n′ 
values in the two arrays.
Exercise 62.  A popular but elementary way to sort an array A[0..n-1] is called 
Bubble Sort:

/* Rearrange values of A[0..n-1] into non-decreasing order. */
   boolean done = false;
   while ( !done ) {
      done = true;
      for (int k=0; k<n; k++)
         if ( A[k]>A[k+1] ) {
            done = false;
            /* Swap A[k] and A[k+1] */
               int temp = A[k]; A[k] = A[k+1]; A[k+1] = temp;
            }
      }

What are the invariants and variants of its outer and inner loops? What is the worst-
case running time of Bubble Sort?
Exercise 63.  For which of the sorting algorithms presented in the text (QuickSort, 
MergeSort, Selection Sort, and Insertion Sort) and in Exercise 62 (Bubble Sort) is 
the running time linear in n when the array A[0..n-1] is already in non-decreasing 
order? Of course, one could always add a special case to any of them; the question 
is: Which ones don’t need a special case to have linear running time when the array 
is already ordered?
Exercise 64.  In section Running time and space (p. 187), the text suggests tail-re-
cursion as a way to limit the depth of recursion in QuickSort. Start with the code for 
QuickSort given in the text, and implement the suggested tail-recursion.
Exercise 65.  In preparation for coding MergeSort in the next exercise, revise 
Collation (p. 173) following the modified specification:



398 ·  Appendix: Exercises

/* Given sections of an array A[j..m-1] and A[m..k-1], each ordered
   separately, create an ordered section of array C[j..k-1] consisting of
   those values. */

Exercise 66.  Code MergeSort using its description (p. 188) and the previous exer-
cise. You may find it helpful to wait until reading Chapter 12 Collections, where a 
useful fact about arrays is revealed.

Collections
Exercise 67.  The Josephus Problem concerns where to stand in a circle of n peo-
ple if every kth person will be brutally murdered (and removed from the circle) until 
there is only one survivor. Write a program to compute where to stand if you want 
to survive, i.e.,

/* Given n people numbered 0 through n-1 and arranged in a circle, and 0<k, 
   let s be the number of the survivor after the Josephus procedure. */

Might there be a closed-form solution that is parametric in n and k?
Exercise 68.  Recall Exercise 28, which tests all integers between 1 and n for the 
validity of the Collatz Conjecture. Observe that all Collatz sequences that reach the 
same integer k share a common suffix from that point on. Use this observation, and 
a bit vector, to speed up the code for Exercise 28.
Exercise 69.  In ranked-choice voting, each of v voters rank their preferences for 1 
or more of c candidates. The winner is the candidate who first obtains a majority of 
first-choice votes after repeated elimination from the election of the candidate with 
the fewest first-choice votes. Design an input format for votes, and implement a pro-
gram that selects the election winner.

Cellular Automata
Exercise 70.  Given an M-by-N int array, int h, and int w, find the upper-leftmost 
h-by-w rectangle of zeros in A. Restate the requirement if you consider it to be ill-de-
fined.
Exercise 71.  A discrete and rectilinear version of the Cutting Stock problem is as 
follows: Given an M-by-N piece of material (the stock), and a list of integer pairs 
denoting the heights and widths of desired pieces, arrange the pieces so that they can 
be cut from the stock. It is your choice as to whether to allow 90-degree rotations 
or not. Read M, N, and the desired heights and widths of pieces from the input, and 
output the solution as an M-by-N array of piece numbers, and a list of piece numbers 
for which no placement was found. A greedy (online) algorithm will process the 
pieces first-come-first-served. An offline algorithm will attempt to do better, per-
haps using some heuristic.
Exercise 72. The straightforward implementation of the Game of Life requires M*N 
steps to update an M-by-N Universe on each generation, regardless of the number 
of live cells. What if, in addition to the two-dimensional arrays for the Universe, you 
were to maintain the ⟨row,column⟩ of each live cell in lists row[0..numberLive-1] 
and column[0..numberLive-1]? Rewrite method NextGeneration so that it 
requires only numberLive steps to update the Universe. Note that if you do this, the 



Knight’s Tour · 399

running time of the program will be dominated by method Display, so the effort 
will only be worthwhile if you refresh the output occasionally rather than every gen-
eration, or if you can similarly speed up Display.169

Knight’s Tour
Exercise 73. The 15-Puzzle arranges numbered tiles in a 4-by-4 grid, with one open 
space. The goal of the puzzle is to slide tiles one at a time within the confines of the 
4-by-4 frame to transform the initial configuration (top) into the final configuration 
(bottom). Design a succinct way to represent a proposed solution given as input data. 
Then, write a program that inputs a proposed solution, and prints whether or not it 
is correct.

Historical Note: Prominent puzzle specialist Sam Loyd claimed (inaccurately) in 
1891 to have invented the 15-Puzzle, and was responsible for puzzle mania when he 
offered $1000 prizes for solutions to various alternative final configurations, which 
he presumably knew to be impossible [41]. Only half the conceivable final config-
urations are possible.
Exercise 74.  (Hard) You probably can solve the 15-Puzzle (see Exercise 73), which 
means you know an algorithm to do so, but what exactly is it? Write a program that 
solves the 15-Puzzle, i.e., that transforms a 4-by-4 array given in the initial configura-
tion into the final configuration by moving tiles one at a time to fill the blank space.
Exercise 75.  In the Knight’s Tour code, tables deltaR and deltaC provide a mea-
sure of variability that might permit the code to be readily generalized for the other 
kinds of chess piece. What are the limitations of deltaR and deltaC for character-
izing chess moves, and what additional parameterization(s) would be required to 
encode the moves of the other kinds of pieces? Why, other than as a mental exercise 
in data representation, is the idea of generalizing the code for other pieces a funda-
mentally stupid idea?
Exercise 76.  Chapter 15 Running a Maze introduces the technique whereby code 
that is specific to a particular data representation is encapsulated within a class that 
provides only abstract data-representation-independent services to its clients. This 
strategy allows a representation to be changed without affecting the client’s code. 
Restructure the code of KnightsTour given in Appendix IV Knight’s Tour to 
employ this technique.
Exercise 77.  What fraction of the area of a square is covered by an inscribed circle? 
Write a program that uses this observation and the Monte Carlo method to compute 
π, e.g., 3.14159, etc. You may think of this as throwing random darts at such a dart-
board, and counting the fraction that land within the bullseye. The text illustrates 
(p. 231) how to obtain a Java random number generator rand by writing: 

Random rand = new Random();

after which a sequence of float values between 0.0 and 1.0 can be obtained by 
repeatedly invoking “rand.nextFloat()”. By the way, this is not a particularly 
good way to compute π. Compare it to computing π using the formula:

169. The output statements provided in our simple programming language are insufficient for 
this because they do not provide a mechanism to selectively update characters on the screen.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12

1/2

1

1



400 ·  Appendix: Exercises

Running a Maze
Exercise 78.  Starting with the code from Chapter 15 for Running a Maze, imple-
ment an alternative data representation, and evaluate it compared with the one 
chosen in the text.
Exercise 79.  The self-checking method isValidPath presented on page 272 
doesn't check for detritus in cells off a valid path. Complete the implementation so 
that it returns false if there are any such “noise” cells in the purported solution.
Exercise 80.  Write a program that inputs a positive integer N, and outputs the inte-
gers from 1 to N2 in a two-dimensional clockwise spiral of increasing size that starts 
centrally, as shown in the diagrams. Thinking of the output as an N-by-N array 
A[0..N-1][0..N-1], start with 1 in A[(N-1)/2][(N-1)/2], and first move hor-
izontally. Primes have gray backgrounds in the figures, in support of Exercise 81.
Exercise 81.  It has been observed that if integers are written in a rectangular spiral, 
then the prime numbers often seem to align along rays emanating from the center. 
The pattern is approximate, and is not visible in small examples. Combine Exercise 80 
and Exercise 48 to demonstrate this effect.

Creative Representations
Exercise 82.  The presentation of Tic Tac Toe in the text provides an efficient test for 
a win by “X” in 1-4 moves. Devise a similar efficient test for a win by “X” in 5 moves, 
or say why it seems too difficult to do so.
Exercise 83.  The solution to the Ricocheting Bee-Bee problem in the text does 
not address boundary conditions. Modify the code to address them, if necessary.
Exercise 84.  (Hard) The text asks: Might there be a closed-form solution to the 
Ricocheting Bee-Bee problem, i.e., some way to compute the total distance traveled 
by the bee-bee that does not require iteration? Specifically, is there some way to com-
pute the distance δ′ by which the bee-bee misses the nearest slit for y=2, and then 
leverage the regularity of the problem to compute the smallest y such that the bee-
bee goes through a slit in terms of δ′? 
Exercise 85.  (Hard) Does the Ricocheting Bee-Bee always emerge from the box, or 
might it go in but never leave? What if the diameter of the bee-bee is zero, and the 
slit width and gun angle are infinite-precision real numbers? 
Exercise 86.  (Hard) Complete the Eight Queens Problem by implementing: 

/* Given A[0..n-1], a permutation of the integers 0..n-1, update A to be the
   next permutation in a sequence that is guaranteed to cycle through all
   n! permutations. */
static void NextPermutation(int A) { ... }

Exercise 87.  (Hard) An interesting aspect of Exercise 86 is that the state of the 
process whereby permutations are enumerated is characterized entirely by the most 
recent permutation. This allows NextPermutation to be “pumped”, i.e., to pick up 
at that point, and proceed to the next.

Suppose you have a procedure that enumerates all permutations (say, printing 
them in sequence), but that is not organized for “pumping”, e.g., it has extensive state 
saved in local variables, and outputs the permutations deep within control statements 
and local-variable scopes (signified here by ...):

7 8 9 10

6 1 2 11

5 4 3 12

16 15 14 13

21 22 23 24 25

20 7 8 9 10

19 6 1 2 11

18 5 4 3 12

17 16 15 14 13



Graphs and Depth-First Search · 401

/* Print all n! permutations of 0..n-1. */
static void ListAllPermutations(int n) { 
   ...
      ...
      /* Print next permutation. */
      ...
   ...
   }

How, in general, can you turn such a procedure into one that can be “pumped” for 
the next permutation in a one-at-a-time fashion?

Graphs and Depth-First Search
Exercise 88.  Compare and contrast the solution for Running a Maze in Chapter 15, 
and the solution given in Chapter 17.
Exercise 89.   Write a program that inputs an N-by-N maze, and outputs the shortest 
path from the upper-left corner to the lower-right corner, or “Unreachable” if there 
is no path. Borrow heavily from Chapter 15 and Chapter 17.

Classes and Objects
Exercise 90.  Design and implement a class Rational that provides arithmetic 
operations on rational numbers akin to those built into Java for int values.
Exercise 91.  Develop a unit test for class Rational, i.e., a method named test that 
exercises the class’s methods, and demonstrates their correct working behavior. The 
individual checks are boring; the challenge is to devise a comprehensive collection; 
typically, only failures are reported. For example:170

public void test() {
   Rational zero = new Rational(0,1);
   Rational one = new Rational(1,1);
   Rational two = new Rational(2,1);
   if ( !isZero(zero) ) System.out.println( "Test1 fails" );
   if ( !one.equals(add(zero,one)) System.out.println( "Test2 fails" );
   if ( !one.equals(add(one,zero)) System.out.println( "Test3 fails" );
   if ( !two.equals(add(one,one)) System.out.println( "Test4 fails" );
   ... 
   } /* test */

Testing can only reveal the presence of bugs; it cannot confirm the absence of all 
bugs.

Unit testing can be black box, gray box, or white box. In black box testing, you 
know the specification of each of the class’s public methods, and the representation 
invariant of each of its public variables, but have no knowledge of how the implemen-
tation works. Such a test can be written as a client with no access to the class’s code. 
The test is adversarial, and attempts to break the underlying implementation using 
any of the class’s legitimate operations. In gray box testing, you leverage knowledge 

170. If test is packaged within the class, names do not have to be qualified by Rational; if 
written as client code, then they must be qualified, e.g. Rational.isZero(...).



402 ·  Appendix: Exercises

of the implementation to tailor checks that stress its points of vulnerability, albeit as 
a client without programmatic access to the internals. A white-box test can inspect 
and validate the class’s private data structures.
Exercise 92.  Type Rational, as defined in Chapter 18, has only a finite number 
of values because numerators and denominators are type int. Replace those types 
with BigInteger, Java's arbitrary-precision integers. Consult online Java documen-
tation, as needed [50].
Exercise 93.  Implement a class Polynomial whose objects are polynomials in one 
variable (call it x) with rational coefficients. Implement appropriate methods for 
Polynomial, e.g., add, sub, mult, div, mod, as well as operations like toString, 
evaluation at a given value of x, and differentiation.
Exercise 94.  Recall the unfortunate explosion of method calls when the kth Fibonacci 
number is computed using recursion (Exercise 26). Memoizing is a general purpose 
technique whereby, in principle, it is unnecessary to evaluate a function f more than 
once on any given argument. Rather, whenever f is computed for an argument x, the 
pair ⟨x, f(x)⟩ is stored in a static table for possible reuse. On being called, the method 
for f first looks in the table to see if it has been computed before for the given argu-
ment, and if so, the value from the table is returned rather than recomputing it.

Memoizing only works for pure functions, i.e., methods that are guaranteed to 
(a) always return the same value for every invocation on the same argument, and (b) 
that have no side effects, either on variables outside the function, or on the input/
output. The first requirement guarantees that function evaluation only uses the 
argument(s) provided, and does not depend in any way on the program state at the 
time the method is invoked. The second requirement is necessary because finding 
the function value in the table and returning it bypasses any side effects of the orig-
inal method definition. 

Exercise 14 explained the difference between a function in extension and  a func-
tion in intention. You can think of memoizing as building an extensional definition 
of a function (in the table) incrementally as a side effect of demands to evaluate the 
function on given arguments using its intensional definition, i.e., its code.

Study online documentation for the library datatype HashMap [51], and use it 
to implement a memoized version of function fib.
Exercise 95.  A limitation of the implementation suggested in the previous exercise 
is that the HashMap will grow without bound. Google for “hashmap as bounded 
cache”, and use what you find to bound the amount of extra memory that memoiz-
ing uses. (This is really an exercise in learning how to use the Internet to help you 
program.)

Debugging
Exercise 96.  Deliberately introduce a mistake into a program, and contemplate how 
you would debug the erroneous code from the observed effect. Repeat.



403

Bibliography

[1] BlueJ, https://www.bluej.org.
[2] Merriam Webster, “Precept”, https://www.merriam-webster.com/dictionary/precept.
[3] R. W. Emerson, “Self-Reliance”, https://www.goodreads.com/quotes/353571-a-foolish-consistency-

is-the-hobgoblin-of-little-minds-adored.
[4] B. Hayes, “Gauss’s Day of Reckoning”, https://www.americanscientist.org/article/gausss-day-of-

reckoning.
[5] “Arc length”, https://en.wikipedia.org/wiki/Arc_length.
[6] J. Gosling, B. Joy, G. Steele, G. Bracha and A. and Buckley, “The Java Language Specification; Java SE 

8 Edition”, 13 02 2015, https://docs.oracle.com/javase/specs/jls/se8/html/index.html.
[7] Python Software Foundation, “The Python Language Reference”, https://docs.python.org/3/refer-

ence.
[8] Unicode, https://home.unicode.org.
[9] A. De Morgan, “Siphonaptera”, https://en.wikipedia.org/wiki/Siphonaptera_(poem).
[10] “Division algorithm”, https://en.wikipedia.org/wiki/Division_algorithm.
[11] “Euclidean Algorithm”, https://en.wikipedia.org/wiki/Euclidean_algorithm.
[12] “Collatz Conjecture”, https://en.wikipedia.org/wiki/Collatz_conjecture.
[13] “Halting Problem”, https://en.wikipedia.org/wiki/Halting_problem.
[14] “Sieve of Eratosthenes”, https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes.
[15] “1729 (number)”, https://en.wikipedia.org/wiki/1729_(number).
[16] C.-K. Shene, “An Analysis of Two In-Place Array Rotation Algorithms”, September 1997. https://

www.researchgate.net/publication/220458460_An_Analysis_of_Two_In-Place_Array_Rotation_
Algorithms.

[17] K. Schwarz, “Randomized Algorithms”, https://web.stanford.edu/class/archive/cs/cs161/
cs161.1138/lectures/09/Small09.pdf.

[18] A. Alexandrescu, “Fast Deterministic Selection”, 16th International Symposium on Experimental 
Algorithms (SEA 2017), vol. 24, p. 24:1–24:18, 2017. 

[19] Küküllőmenti legényes, “Quick-sort with Hungarian (Küküllőmenti legényes) folk dance”. https://
www.youtube.com/watch?v=ywWBy6J5gz8.

[20] AlgoRythmics, “Merge-sort with Transylvanian-saxon (German) folk dance”, https://www.youtube.
com/watch?v=XaqR3G_NVoo.

[21] AlgoRythmics, “Select-sort with Gypsy folk dance”, https://www.youtube.com/watch?v=N-
s4TPTC8whw.

[22] AlgoRythmics, “Insert-sort with Romanian folk dance”, https://www.youtube.com/watch?v=ROal-
U379l3U.

[23] “Cellular Automaton”, https://en.wikipedia.org/wiki/Cellular_automaton.
[24] S. Wolfram, “A New Kind of Science”, https://www.wolframscience.com/nks.
[25] “von Neumann Universal Constructor”, https://en.wikipedia.org/wiki/Von_Neumann_universal_

constructor.
[26] “Conway's Game of Life”, https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life.

https://www.bluej.org
https://www.merriam-webster.com/dictionary/precept
https://www.goodreads.com/quotes/353571-a-foolish-consistency-is-the-hobgoblin-of-little-minds-adored
https://www.goodreads.com/quotes/353571-a-foolish-consistency-is-the-hobgoblin-of-little-minds-adored
https://www.americanscientist.org/article/gausss-day-of-reckoning
https://www.americanscientist.org/article/gausss-day-of-reckoning
https://en.wikipedia.org/wiki/Arc_length
https://docs.oracle.com/javase/specs/jls/se8/html/index.html
https://docs.python.org/3/reference
https://docs.python.org/3/reference
https://home.unicode.org
https://en.wikipedia.org/wiki/Siphonaptera_(poem)
https://en.wikipedia.org/wiki/Division_algorithm
https://en.wikipedia.org/wiki/Euclidean_algorithm
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://en.wikipedia.org/wiki/1729_(number)
https://www.researchgate.net/publication/220458460_An_Analysis_of_Two_In-Place_Array_Rotation_Algorithms
https://www.researchgate.net/publication/220458460_An_Analysis_of_Two_In-Place_Array_Rotation_Algorithms
https://www.researchgate.net/publication/220458460_An_Analysis_of_Two_In-Place_Array_Rotation_Algorithms
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/lectures/09/Small09.pdf
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/lectures/09/Small09.pdf
https://www.youtube.com/watch?v=ywWBy6J5gz8
https://www.youtube.com/watch?v=ywWBy6J5gz8
https://www.youtube.com/watch?v=XaqR3G_NVoo
https://www.youtube.com/watch?v=XaqR3G_NVoo
https://www.youtube.com/watch?v=Ns4TPTC8whw
https://www.youtube.com/watch?v=Ns4TPTC8whw
https://www.youtube.com/watch?v=ROalU379l3U
https://www.youtube.com/watch?v=ROalU379l3U
https://en.wikipedia.org/wiki/Cellular_automaton
https://www.wolframscience.com/nks/
https://en.wikipedia.org/wiki/Von_Neumann_universal_constructor
https://en.wikipedia.org/wiki/Von_Neumann_universal_constructor
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life


404 · Bibliography

[27] “Arthur Samuel”, https://en.wikipedia.org/wiki/Arthur_Samuel.
[28] “Wheat and the Chessboard Problem”, https://en.wikipedia.org/wiki/Wheat_and_chessboard_

problem.
[29] Quote Investigator, “If a Cluttered Desk Is a Sign of a Cluttered Mind, We Can’t Help Wondering 

What an Empty Desk Indicates”, https://quoteinvestigator.com/2017/09/02/clutter.
[30] “Methods of computing square roots”, https://en.wikipedia.org/wiki/Methods_of_computing_

square_roots.
[31] “Integer square root”, https://en.wikipedia.org/wiki/Integer_square_root.
[32] “Language and Thought”, https://en.wikipedia.org/wiki/Language_and_thought.
[33] “Colorless green ideas sleep furiously”, https://en.wikipedia.org/wiki/Colorless_green_ideas_sleep_

furiously.
[34] J. a. B. P. Wickerson, “Diagrams for Composing Compilers”, 21 May 2020, https://johnwickerson.

wordpress.com/2020/05/21/diagrams-for-composing-compilers.
[35] US Census Bureau, “About Congressional Apportionment”, https://www.census.gov/topics/pub-

lic-sector/congressional-apportionment/about.html.
[36] “Complex instruction set computer”, https://en.wikipedia.org/wiki/Complex_instruction_set_

computer.
[37] “Reduced instruction set computer”, https://en.wikipedia.org/wiki/Reduced_instruction_set_com-

puter.
[38] “The Twelve Days of Christmas (song)”, https://en.wikipedia.org/wiki/The_Twelve_Days_of_

Christmas_(song).
[39] “Cantor's diagonal argument”, https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument.
[40] “Median of medians”, https://en.wikipedia.org/wiki/Median_of_medians.
[41] “Sam Loyd”, https://en.wikipedia.org/wiki/Sam_Loyd.
[42] “P. Erdős”, https://en.wikipedia.org/wiki/Collatz_conjecture.
[43] “Geometric Series”, https://en.wikipedia.org/wiki/Geometric_series.
[44] “George Bool”, https://en.wikipedia.org/wiki/George_Boole.
[45] “John_von_Neumann”, https://en.wikipedia.org/wiki/John_von_Neumann.
[46] “Turtles all the way down”, https://en.wikipedia.org/wiki/Turtles_all_the_way_down.
[47] “Venus”, https://en.wikipedia.org/wiki/Venus.
[48] “von Neumann Architecture”, https://en.wikipedia.org/wiki/Von_Neumann_architecture.
[49] “GNU Classpath 0.95”, https://developer.classpath.org/doc/.
[50] “BigInteger”, https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html.
[51] “HashMap”, https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html.
[52] “C/C++”, https://learn.microsoft.com/en-us/cpp/c-language/.
[53] “JavaScript”, https://developer.mozilla.org/en-US/docs/Web/JavaScript.
 

https://en.wikipedia.org/wiki/Arthur_Samuel
https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem
https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem
https://quoteinvestigator.com/2017/09/02/clutter
https://en.wikipedia.org/wiki/Methods_of_computing_square_roots
https://en.wikipedia.org/wiki/Methods_of_computing_square_roots
https://en.wikipedia.org/wiki/Integer_square_root
https://en.wikipedia.org/wiki/Language_and_thought
https://en.wikipedia.org/wiki/Colorless_green_ideas_sleep_furiously
https://en.wikipedia.org/wiki/Colorless_green_ideas_sleep_furiously
https://johnwickerson.wordpress.com/2020/05/21/diagrams-for-composing-compilers
https://johnwickerson.wordpress.com/2020/05/21/diagrams-for-composing-compilers
https://www.census.gov/topics/public-sector/congressional-apportionment/about.html
https://www.census.gov/topics/public-sector/congressional-apportionment/about.html
https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/The_Twelve_Days_of_Christmas_(song)
https://en.wikipedia.org/wiki/The_Twelve_Days_of_Christmas_(song)
https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument
https://en.wikipedia.org/wiki/Median_of_medians
https://en.wikipedia.org/wiki/Sam_Loyd
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Geometric_series
https://en.wikipedia.org/wiki/George_Boole
https://en.wikipedia.org/wiki/John_von_Neumann
https://en.wikipedia.org/wiki/Turtles_all_the_way_down
https://en.wikipedia.org/wiki/Venus
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://developer.classpath.org/doc/
https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://learn.microsoft.com/en-us/cpp/c-language/
https://developer.mozilla.org/en-US/docs/Web/JavaScript


405

Index

Symbols
-  25
--  22
..  29
'  25
"  25
( )  22, 23, 25
[ ]  24, 25
[ ][ ]  24, 25
{ }  26, 27, 28
*  25
/  25
/* */  28
//  28
&&  25
%  25
^  29
+  25
++  22
<  25
<=  25
< >  308
!=  25
=  22, 23
==  25
>  25
>=  25
||  25
0-origin counting  114
1-D

array  21
array type  27
determinate-enumeration  116, 140
indeterminate-enumeration  115

1-origin counting  114
2-D

array  22, 209
array type  27
determinate-iteration  124
iterations  122

15-Puzzle  399
32-bit

two’s-complement binary integer  32, 114
64-bit

two's-complement binary integer  32
1729  125
@override  300

A
abstraction  295
access time  30
accumulation  83
actor  8
adage  385
address  30

arithmetic  31, 206, 209, 368
translation  30

adjacency matrix  210
admonition  385
AI  280
aleph null  126
algorithm  v, vii, 20
alias  156, 203
amortized cost  204
analogy  10
analysis  5
aphorism  385
argument  28
arithmetic

-expression  21, 37
-overflow  46, 100, 114, 146, 393

array
1-D array  21
2-D  22, 209
Array Equality  138
ArrayList  vii, 200, 303
ArrayList<E>  307
element  24
equality  138
layout  31
overflow  202
ragged  209
subscript  24
triangular  209

Artificial Intelligence  280
assertion

assert statement  50
assignment  21

statement  22
auto

boxing and unboxing  312
decrement  22, 23



406 · Index

increment  22

B
backtrack  60, 226
backward reasoning  385
base

base case, of recursion  57, 82
in memory, of an array  31
of a number system  23, 25, 32

bench check  109
BigInteger  114
bignum  114
bin  101
binary

Binary Search  143
Binary Search, in debugging  332
fixed-point number  32
floating-point number  32
operation  25

bit  30
vector  206

block  26
body  23, 28
boilerplate  221
boolean  26

constant  25
bottom-up programming  389
boundary condition  99
boxed value  311
break  395
breakpoint  333
Bubble Sort  397
bucket  208
bug  321
byte  30

byte-addressable memory  30
byte code  388

C
C++  294
cache memory  31
call  22, 23, 25

stack  325
canonicalization  302
Cantor, Gregor  394
Case Analysis  70
cast  300
catch  270, 289
cellular automaton  211
Central Processing Unit  279

char  26
character set  32
Checkers  277
chunk  vi
class  22, 293

definition  28
generic  306
hierarchy  vii, 294
inheritance  vii, 294
instance  293
modularity  250
specification  54
variable  27

client
of class  8
of specification  41
-server  295

coding  1
coercion  313
collation  173
Collatz Conjecture  81, 392, 398
collection  52, 199

ordered  202
collision  208
column index  22
comment  28

header  52
representation  51
specification  34
statement  37

compatible  22
compiler  21
complexity  42
composite  119, 130
compression  103, 393
computer  v, 20

word  30, 279
condition

Boolean expression  21
boundary  99
strengthening  49
weakening  49

Conjunctive Normal Form  67
conjunct  67
conjunction  67

constant  25
symbolic  223, 224

constructor  297
contract  42
conversion  313



407

Conway, John  211
countable  126, 394
counting  113
coupling  7
CPU  279
Cutting Stock Problem  393, 398

D
data

compression  103, 393
encapsulation  9, 250
external  8
flow  7
input  21
internal  8
output  21
processing  96
representation  8, 213, 222, 249, 275
representation invariant  vi, 52
structure  45, 52, 102

debug
debugger  333
debugging  11, 322

declaration  21
in for-statement  23
specification  51

default value  27, 45
defensive programming  46, 335
definiens  387
definition  22

of class  28
deliberation  2, 41, 134, 245, 263
de Morgan

Laws  136
poetry  57

Depth-First Search  286
design  33
determinate iteration  14
diagram

concrete  104
region  106
schematic  106

Dijkstra, Edsger  166
diktat  385
direct

access into array  24, 31, 207
path in maze  85, 243

disk  30
Divide and Conquer  176, 344

Binary Search  143

in debugging  332
MergeSort  188
QuickSort  185
Stepwise Refinement  55

divisor  130
domain  387
double  26
Droughts  277
Dutch National Flag Problem  166
dynamic method dispatch  vii, 302

E
edge

condition  99
edge-list representation  210

adjacency-matrix representation  210
of graph  285

edict  385
effect  21

of statement  21
effective  59
e.g.  29
Eight Queens Problem  280
Einstein, Albert  386
emulation  388
encapsulation  vii, 246, 250, 295
end-to-end correctness  12
enumeration  113

determinate  116
determinate vs indeterminate  14, 154
Enumeration of Rationals  127, 306
indeterminate  115
of collection elements  318

environment  20
equals  299
error

debugging  321
null-pointer  296
off-by-one  114
round-off  73
subscript-out-of-bounds  24, 137

Euclid's Algorithm  80, 126, 302
evaluation  21
exception  270, 289

null-pointer  296
execution  v, 20

single-step  333
export  250
expression  21, 25

arithmetic  21



408 · Index

evaluation  21
linear  158

extends  298, 301
external data  8

F
factorial  172
false  25
fetch-execute cycle  20, 392
field, instance  295
final  27, 224
Find Minimal  140
fixed-point binary integer  32
float  26
floating-point binary number  26, 32
for-statement  23
forward reasoning  385
fractal  82
fraction  126, 301

reduced  126
frame of reference  231
frequency  200

distribution  101, 241
function  22

call  22
definition  28
graph of  387
in extension  387
in intension  387
invocation  22
range  387

fuzz testing  274

G
garbage collection  313
gcd  80, 126, 302
generalization  176, 344
generic class  306
geometric series  180
getter  297
given  29
graph  285

Depth-First Search  286
directed  286
of function  387
of relation  285
representation as 2-D array  210
undirected  286

greatest common divisor  80, 126
greedy algorithm  231, 393

H
Hamiltonian Circuit  291
hardware concepts  30
Hardy, G. H.  125
hash

collision  208
function  208
HashMap  402
HashSet  315
set  207
table  207

header comment  52, 54
heuristic  238
hierarchy

class   294
of refinements  56
taxonomy  293
whole-part  39

Hippocratic
coding  3
oath  3

histogram  101, 205, 395
bin  101

Horner's Method  393
humility  3

I
identity

element  99, 101
of objects  299

i.e.  29
iff  29
if-statement  22, 23
immutability  298
imperative  35
implementation  34
import  240, 314
in

variable initialized to Scanner  25
incremental

code development  vii
computation  96
installation of RAM  31
testing  12

indentation  34, 52, 54, 366
indeterminate iteration  14
index  21, 22

column index  22
row index  22
thumb  396



409

information hiding  vii, 42, 246, 295
inheritance  vii

class   294
multiple  294

initialize-compute-use pattern  221
input  v

cursor  21
data  21
expression  25

input-output specification  34
Insertion Sort  192
in situ  29, 154
instance

instanceof  300
method  28, 295
of a class  295
of a generic class  309
variable  27, 295

int  26
integer

Integer Division  78
Integer Square Root  12
range  29
two’s-complement  114

Integer Division  78
Integrated Development Environment (IDE)  18
intent  41
interactive application  204
interface  42, 58, 246, 250
internal data  8
interpreter  21, 387, 388
invariant

loop  74, 96
representation  vi, 51, 98
weakening  91

invocation  23, 25
I/O

effect  46
spec  34

iteration  9
determinate  14, 116
indeterminate  14, 115
iterative-computation pattern  5
Iterative Refinement  74

iterator  319
Iterator<E>  319

J
Java  v, 19, 294, 310

Virtual Machine  388

Josephus Problem  398
Juggle in Cycles  163
JVM  388

K
key-value pair  206
Knight’s Tour  219, 371

L
Last In First Out  266
least-recently-used paging  31
Left-Rotate-1  160
Left-Rotate-k  160
Left-Shift-k  157
let  29
library  vii, 28, 314
lifetime  21
LIFO  266
linear

linear expression  158
Linear Search  129
Linear-Time Median  180

list  199
ordered  202

locality  30
local variable  27
location  21
locator  130
long  26, 114
loop  23

fusion  196
invariant  vi, 74, 96
variant  vi, 74

Loyd,Sam  399
LRU  31

M
machine

machine code  20
Machine Learning  280

Magic Square  128
mark  286
Math  28
maxim  385
maximal vs maximum  140
maze  85, 243, 287

concave corner  89
convex corner  88
hairpin turn  88
normal wall  88



410 · Index

shortest path  401
median  175

of medians  180
memoize  402
memory  v, 20

access time  30
address  30
byte-addressable  30
cache  31
hierarchy  30
location  21
physical  31
random access  30
sufficiency  45
virtual  31

MergeSort  188, 398
method  22

call  22, 23, 25
constructor  297
definition  28
dynamic dispatch  vii, 302
getter  297
instance method  28, 295
invocation  22, 23, 25
overloading  53, 306, 313
overriding  296
setter  297
specification  52

methodology  v
mindfulness  2, 41, 134, 245, 263
minimal vs minimum  140
ML  280
mnemonic  2
mode  395
modifiability  297
modifier  27

final  224
private  246
protected  296
public  244
static  244, 295

modular arithmetic  118
modularity  vii, 42, 250

encapsulation  9
modulus  130, 393
Monte Carlo technique  240
moral  385
motif  385
multiplicity  200
multiset  200

mutability  297

N
n!  172
name  2
new  25, 295
nextInt()  25
Nicomachus  391
node  210, 285
nondeterminism  49
nontermination  76
Noughts and Crosses  275
null  201, 295, 296, 300, 314

null-pointer exception  296
numerical

integration  10
magnitude  46
representation  32, 46

O
object  293

equality  299
field  295
identity  299
instantiation  vii, 295
method  295
Object  293
object-oriented programming  vii, 293
reference  295

off-by-one error  114, 115
offline

computation pattern  7, 95
online

algorithm  95
computation pattern  7, 95

operating-system concepts  30
operation

binary  25
unary  26

orbit  76
ordered list  202
output  v

data  21
statement  23

overflow
arithmetic  46, 114
array  202

overloading  313
of indentation  39
of method  53, 306



411

override  296, 300

P
paging  31
pair

Pair<K,V>  310
parameter

of generic class  307
of method  22, 28
parametric  4
parametric polymorphism  313
type parameter  307

Partitioning  171
Pascal's Triangle  396
path  85, 243
pattern  vi, 3, 349, 385

1-D indeterminate-enumeration  4
A01  34
A02  34
A04  44, 47, 54, 335
A05  51
A06  51
A07  52
A08  54
architectural  3
B01  57, 366
B02  70
B03  74
B04  82
B05  62
B06  64
B07  70
B08  73
B09  78
C01  3, 13
C02  129, 196
C04  221
C05  7, 95
C06  5
C07  5
C08  95
C09  38, 48, 84, 161
compute-use  3
D01  4, 14, 115, 130
D02  115
D03  140
D04  116
D05  5, 116
D06  124
D07  125

D08  124
D09  124
D10  124
D11  124
D12  125
E01  130
E02  138
E03  142
E05  142
F01  157
F02  160
F03  154
F04  160
G01  52, 200
G02  200
G03  200, 203
G04  201
G05  201
G06  201
G07  201
H01  205
H02  205
H03  205
H04  205
H05  205
H06  205
how to learn  138
initialize-compute-use  221
iterative-computation  5
offline-computation  7, 95
online-computation  7, 95
precondition-postcondition  44
search-and-use  129, 130
sequential-search  130

perfect
number  393
shuffle  396

permutation  172, 200, 281, 400
physical memory  31
pivot  171
plan  385
polymorphism  vii, 313

conversion  313
overloading  53
parametric  307, 313
subtype  302, 313

pop a stack  266
postcondition  vi

of method  53
of specification  44



412 · Index

strengthening  49
power, in specification  29
precept  vi, 1, 343, 385

A01  1
A02  1
A03  3
A04  2, 41, 134, 245, 263
A05  3
A06  3, 244
A07  11, 322
A08  11, 60
A09  224
A10  6, 220
A11  7, 222, 249
B01  15, 86, 220
B02  284
B03  6, 86, 131, 143, 153, 175, 246
B04  175
B05  5, 86, 220, 317, 318
B06  9, 317
B07  9, 283
B10  103
B13  105, 231
B14  106, 131, 220
B15  86
C01  56
C02  85
C03  244
C04  7
C07  147
C08  60
C10  164, 263
C11  176
C12  176
C13  176
D01  37, 85
D03  40, 132
D09  43
D15  223
D17  98
D19  221
D20  221
D23  41, 85
D28  44
D29  135
D36  49
E01  15, 86, 131
E02  16, 148
E05  121
E06  72, 169

E07  136
E08  73
F01  8, 222, 249
F02  253
F03  135, 252
F04  251, 280
F05  227
F08  225, 252, 276
F10  222, 249, 275, 278
G01  2, 222
G02  2, 222
G03  223, 254
G04  239
G05  239
G06  246
H01  147
H02  147, 213, 229
H03  236, 246
H04  3
H05  251
H06  233
H07  68, 212, 228, 245
H08  261
H09  186, 245
H11  224
H12  223
H17  221
H18  139
H20  122
H21  121, 157
H22  162
I01  13, 87, 144, 230
I02  87, 145
I03  14, 144
I04  14, 117, 144, 155
I05  87, 98, 104, 145, 196
I06  88, 104, 145
I08  141
I10  98, 105
I11  145
I14  88
I17  109
I19  99, 150, 235, 269
I20  100
I21  121, 193
J01  229
J06  12, 224
J07  12, 229
J09  263
J12  321



413

precondition  vi
implicit  67
of method  53
of specification  44
weakening  49

predicate  137
prefix

of array  199
of run  105

Primality Testing  130
prime  119, 130

relatively  164
sieve  119

primitive
expression  25
type  310, 311

principle  385
private  27, 246
problem

15-Puzzle  399
Array Equality  138
Binary Search  143
Checkers  277
Collation  173
Cutting Stock  393, 398
Droughts  277
Dutch National Flag Problem  166
Eight Queens Problem  280
Enumeration of Rationals  127, 306
Find Minimal  140
Hamiltonian Circuit  291
Insertion Sort  192
Integer Division  78
Integer Square Root  12
Josephus  398
Juggle in Cycles  163
Knight’s Tour  219, 371
Left-Rotate-1  160
Left-Rotate-k  160
Left-Shift-k  157
Magic Square  128
Median  175
Merge Sort  188
Partitioning  171
Primality Testing  130
QuickSelect  176
QuickSort  185
reduction  69, 282
Reverse  154
Ricocheting Bee-Bee  282, 400

Run Decoding  111
Run Encoding  103
Running a Maze  vii, 6, 85, 243, 287, 322, 375
Selection Sort  189
Sentinel Search  139
Sequential Search  134
Tic-Tac-Toe  275, 400
transformation  282
understanding  6

procedure
call  22, 23
definition  22
invocation  22, 23
stub  228

process  30, 40
processor  20
program  v, 20

execution  v, 20
fragment  34
location  21
segment  34
state  21

programming  v, 1
defensive  335
object-oriented  vii, 293
pattern  vi, 3
precept  vi

programming language  v, 20
concepts  20
constructs  22
imperative  20
semantics  v, 19, 22
syntax  v, 19, 22

protected  27, 296
pseudo-code  4
public  27, 244
publish  250
Python  v, 310

Q
QuickSelect  176
QuickSort  185

R
radix  393
ragged array  209
Ralph Waldo Emerson  2
RAM  30
Ramanujan

cubes  125, 206



414 · Index

random access memory  30
ranked-choice voting  398
rational  126
reactive system  74
real-time application  180
recursion  154, 176, 286, 344

in stepwise refinement  57
Recursive Refinement  82
tail  188
unnecessary  177

reduction  69, 282
redundant variable  225, 252, 276
reentry cell  260
reference  42, 295
refinement  35, 55

Case Analysis  70
Concurrent Refinement  56
Iterative Refinement  74
Recursive Refinement  82
Sequential Refinement  57
Stepwise Refinement  55

region of interest  106
relation  285

symmetric  286
Repeated Left-Rotate-1  161
representation

data  8, 213, 222, 249
invariant  51, 98, 253

requirement  40
elicitation  33

resp.  29
return  24
Reverse  154
Ricocheting Bee-Bee  282, 400
round-off error  73
row index  22
rule  385
run

length  106
maze  85, 243
prefix  105
program  20
Run Decoding  111
Run Encoding  103, 393
Running a Maze  vii, 6, 243, 287, 322, 375

S
Samuels, Arthur  280
satisfaction  49
saying  385

scalar variable  22
Scanner  25
schematic diagram  104
scientific notation  32
scope  21, 36, 239, 295
search  129

1-D indeterminate enumeration  130
Binary Search  143, 396
Depth-First Search  286
for array-element inequality  138
for divisor  130
for minimal value in array  140
Linear Search  129
search-and-use pattern  130
Sentinel Search  395
Sequential Search  130, 134

selection  176
Selection Sort  189

self-checking code  271
self-similar  82
semantics  v, 19
sentinel  235, 279

Sentinel Search  139, 395
Sequential

Refinement  57
Sequential Search  130, 134

set  200
setter  297
short-circuit mode  137
side effect  46
Sierpiński Triangle  82
Sieve of Eratosthenes  119
single point of entry/exit  245
single-step execution  333
sort

Bubble Sort  397
Insertion Sort  192
MergeSort  188, 398
of already ordered array  397
 of three values  166
QuickSort  185
Selection Sort  189
stability  197

spanning tree  287
specification  vi, 33

input-output  34
nondeterministic  49
of classes  54
of method  52
of statements  34



415

of variables  51
spiral  400
s.t.  29
stability  197
stack  266
state  vi, 8, 21

infinite sequence of states  76
orbit  76
space  47
stuck state  76
transition  21

statement  21, 22
assert  50
assignment  22
break  395
call  23
catch  289
comment  37
conditional  22
execution  21
for  23
if  22
method invocation  23
output  23
return  24
specification  33
throw  270, 289
try  270, 289
while  23

static  27, 244, 295
Stepwise Refinement  55
strengthening

a condition  49
the postcondition  63

String  27
stub  228
subclass  301
subscript

out-of-bounds error  24, 137
subtype  301

polymorphism  313
suggestion  385
super  301
superclass  301
Swap Generalization  161
symbolic constant  223, 224
symmetry  385
syntax  v, 19
System.currentTimeMillis  316, 395
System.exit  51

T
taxonomy  293
template  385
termination  46
test

fuzzing  274
incremental  12
unit  402

this  300
Three Flips  163
throw  270, 289
Tic-Tac-Toe  275, 400
time

delay  218
running time  vii, 316, 395
runtime  20
sufficiency  46

top-down programming  56, 389
top of stack  266
toString  298, 301
trace  123
transformation  282
transition  21
tree

of refinements  56
spanning  287

true  25
try  270, 289
two’s-complement integer  26, 32, 114
type  21, 26

parameter  307

U
unary operation  26
undefined behavior  45
Unicode  26, 32
uninitialized variable  45
unit test  401, 402

V
value  21

default  27
variable  21, 24

class  27
instance  27, 295
local  27
redundant  225, 252, 276
scalar  22
subscripted  24
uninitialized  45



416 · Index

untyped  356
variant  74
virtual

field  298
memory  31

visibility  250
vocabulary  386
void  27
von Neuman, John  211

W
Warnsdorff 's Rule  239
weakening

a condition  49
an invariant  91
the precondition  62

well-founded  75
while-statement  23
whitespace  356
word  30
wrapped value  311



417



This book is an introduction to computer programming aimed at the level 
of a first college course. It is also suitable as a monograph for people beyond 
the introductory level who are unfamiliar with its methodological content. 

The book’s subject is programming principles, not programming language 
features. The programming notation used is the common core that is present 
in all imperative programming languages, including Java, Python, C/C++, and 
JavaScript, with a description of differences relegated to an appendix.

The approach is distinctive in that it presents content to beginners that 
is often considered advanced. Notwithstanding this, it retains an introductory 
character—by avoiding formalism, offering intuitive analogies, and providing 
elementary explanations.

Language-oriented introductions to programming are often encyclopedic 
tomes. In contrast, Principled Programming is a comparatively short, coherent, 
and digestible book that presents  a compelling approach,  knitted together 
by interesting, nontrivial examples woven throughout—a book that invites 
cover-to-cover reading.

Tim Teitelbaum joined the faculty of Cornell University’s Computer Science 
Department in 1973. His teaching focus over many years was introducing 
beginners to programming, which he did for more than 9000 students. 
He is currently Professor Emeritus.

Principled Program
m

ing
Tim

 Teitelbaum


	Preface
	Chapter Guide
	Chapter 1 Introduction
	Precepts 
	Patterns
	Analysis
	Process
	Example
	Pragmatics

	Chapter 2 Prerequisites
	Programming Concepts
	Programming Language Constructs
	English Conventions
	Hardware and Operating System Concepts

	Chapter 3 Specifications and Implementations
	Statement Specifications
	Declaration Specifications
	Method Specifications
	Class Specifications

	Chapter 4 Stepwise Refinement
	Divide and Conquer 
	Sequential Refinement 
	Case Analysis
	Iterative Refinement
	Recursive Refinement
	Library of Patterns
	Choosing a Refinement
	Extended Example: Running a Maze

	Chapter 5 Online Algorithms
	Data Processing
	Data Compression

	Chapter 6 Enumeration Patterns
	Counting
	1-D Indeterminate Enumeration
	1-D Determinate Enumeration
	Enumeration Mod N 
	Sieve of Eratosthenes
	2-D Enumerations
	Ramanujan Cubes
	Rational Numbers
	Magic Squares

	Chapter 7 Sequential Search
	Primality Testing
	Search in an Unordered Array
	Array Equality
	Sentinel Search
	Find Minimal

	Chapter 8 Binary Search
	An Application of Divide and Conquer

	Chapter 9 One-Dimensional Array Rearrangements
	Reverse
	Left-Shift-k
	Left-Rotate-1
	Left-Rotate-k
	Dutch National Flag
	Partitioning
	Collation

	Chapter 10 Median
	Average-Case Linear-Time Algorithm
	Worst-Case Linear-Time Algorithm

	Chapter 11 Sorting
	QuickSort
	MergeSort
	Selection Sort 
	Insertion Sort 
	Stability

	Chapter 12 Collections
	Lists
	Histograms
	Hash Tables
	Two-Dimensional Arrays

	Chapter 13 Cellular Automata
	Top-level Code Structure
	Data Representation
	Display
	Update
	Game of Life

	Chapter 14 Knight’s Tour
	Understanding the Problem
	Top-level Code Structure 
	Data Representation
	Top-level Procedures
	Initial Test
	Method Solve
	Boundary Conditions
	Testing, revisited 
	Heuristics
	Testing, revisited yet again
	Monte Carlo Tours

	Chapter 15 Running a Maze
	Top-level Code Structure
	Algorithm
	Data Representation
	Initial Tests
	Direct Paths
	Input
	Testing, revisited
	Code Development, revisited
	Direct Paths, revisited
	Boundary Conditions
	Self-Checking Code
	Testing, revisited yet again

	Chapter 16 Creative Representations
	Tic-Tac-Toe
	Checkers
	Eight Queens Problem
	Ricocheting Bee-Bee

	Chapter 17 Graphs and Depth-First Search
	Relations
	Graphs
	Depth-First Search
	Running a Maze, Revisited

	Chapter 18 Classes and Objects
	Essential Notions
	Pair
	Fraction
	Rational
	Subtype Polymorphism and Dynamic MethodDispatch
	ArrayList
	Parametric Polymorphism and GenericClasses
	Garbage Collection
	Libraries
	HashSet
	Iterators

	Chapter 19 Debugging
	Example Bugs
	Debuggers 
	Defensive Programming

	About the Author
	Acknowledgments
	Appendix I Precepts
	Appendix II Patterns
	Appendix III Language Similarities
	Concepts
	Constructs

	Appendix IV Knight’s Tour
	Appendix V Running a Maze 
	Appendix VI Enumerating Rationals
	Appendix VII Exercises
	Bibliography
	Index

