
120 COMMUNICATIONS OF THE ACM | NOVEMBER 2020 | VOL. 63 | NO. 11

contributed articles

T H E E D U C AT I O N A L U S E of coding in schools is at
a crossroads.

We are at a moment of extraordinary opportunity.
A decade ago, our research group wrote an article
for Communications titled “Scratch: Programming
for All.”15 At the time, our subtitle was aspirational.
Now, it is becoming the reality. School systems and
policymakers are embracing the idea that coding can
and should be for everyone. Countries from Chile
to England to South Africa to Japan are introducing
coding to all students.

We are also at a moment of extraordinary challenge.
In many places, coding is being introduced in ways
that undermine its potential and promise. If we do not
think carefully about the educational strategies and
pedagogies for introducing coding, there is a major
risk of disappointment and backlash.

During the past decade, we have seen that it is
possible to spread coding experiences to millions of
children around the world. But we have also seen that
it is much more difficult to spread educational values

and approaches—that is the big chal-
lenge for the next decade.

The expansion of coding in educa-
tion has been catalyzed by new types of
programming interfaces (particularly
block-based coding1), a proliferation of
nonprofit initiatives supporting com-
puter-science education (such as Code.
org, CSforAll, and Code Club), and a
growing array of programmable devic-
es that broaden the range of what stu-
dents can code (such as micro:bit,20 ro-
botics kits,9 and programmable toys23).

Our own work on Scratch (Figure 1)
has both contributed to and benefitted
from this broader trend. When we
started developing the Scratch pro-
gramming language and online com-
munity in 2002, our goal was not sim-
ply to help children learn to code. We
had a broader educational mission. We
wanted to provide all children, from all
backgrounds, with opportunities to
learn to think creatively, reason system-
atically, and work collaboratively. These
skills are essential for everyone in to-
day’s fast-changing world, not just
those planning to become engineers
and computing professionals. And
these same skills are valuable in all as-
pects of life, not just for success in the
workplace but also for personal fulfill-
ment and civic engagement.13

The use of Scratch has been growing
rapidly throughout the world: in the past
year, more than 20 million young people
created Scratch projects (Figure 2). Scratch
began with use primarily in homes and
informal learning settings,11 but use in
schools has expanded to more than
half of all Scratch activity. Around the

Coding at
a Crossroads

DOI:10.1145/3375546

While millions of students worldwide have
enjoyed coding experiences over the last
decade, the next challenge is spreading
educational values and approaches.

BY MITCHEL RESNICK AND NATALIE RUSK

 key insights
	˽ In many educational settings, coding is

introduced in narrow ways that focus
primarily on teaching specific concepts,
rather than supporting students in
developing the creativity, collaboration,
and communication skills needed to
thrive in today’s fast-changing world.

	˽ For students to develop computational
fluency and creative thinking skills, they
need opportunities to create projects,
based on their passions, in collaboration
with peers, in a playful spirit.

http://dx.doi.org/10.1145/3375546

NOVEMBER 2020 | VOL. 63 | NO. 11 | COMMUNICATIONS OF THE ACM 121

Figure 2. Projects shared in the Scratch online community.

12,000,000

10,000,000

8,000,000

6,000,000

4,000,000

2,000,000

0

P
ro

je
ct

s

Year

Scratch Projects Shared by Year

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

world, young people are using Scratch
in a wide variety of ways. For example:

	˲ middle-school students across sev-
eral countries created Scratch projects
illustrating their visions for how tech-
nological innovations would transform
society by the year 2050;

	˲ thousands of young people created
Scratch animations against racism and
in support of the Black Lives Matter
movement;

	˲ an elementary-school teacher in
Mexico integrated Scratch into a sci-
ence unit on butterflies, with students
creating animations of the butterfly life
cycle and robotic models of butterfly
motion, based on their observations of
real butterflies;

	˲ students from around the world
created a studio called #ProtectOurEarth
where they shared hundreds of projects
highlighting issues related to climate
change, including a game where you
guide a polar bear across the melting
Arctic ice caps.

Opportunities and Challenges
In the process of creating and sharing
projects like these, students are not just

learning to code, they are coding to
learn. They are not only learning impor-
tant mathematical and computational
concepts, they are also deepening their
understanding of ideas in other disci-
plines and developing a broad range of
problem-solving, design, collabora-
tion, and communication skills.7,16

Unfortunately, in many educational
settings, coding is introduced in much
more limited and constrained ways, so
that students do not have the opportu-
nity to experience the full conceptual
and expressive powers of coding. Here
are some of the challenges:

	˲ Too often, schools are introduc-
ing students to computer science by
teaching them definitions of words as-
sociated with computing, without pro-
viding them with opportunities to
learn and apply computational con-
cepts and practices in the context of
meaningful activities. For example,
some school districts introduce com-
puting to elementary-school students
by teaching them the definition of the
word “algorithm” and the differences
between hardware and software, instead
of engaging students in active learning
through computing activities, such as

Figure 1. The Scratch website in June 2020.

122 COMMUNICATIONS OF THE ACM | NOVEMBER 2020 | VOL. 63 | NO. 11

contributed articles

consideration what the student’s pro-
gram is intended to do, how well it ac-
complishes the student’s goals, wheth-
er the code works as intended, whether
people are able to interact with it, or
how the student’s thinking develops
over a series of projects. We see greater
potential in other research and evalua-
tion approaches, such as those that
document and analyze teachers’ facili-
tation practices and students’ learning
trajectories over time.6,8

For coding initiatives to live up to
their promise and potential, signifi-
cant changes are needed in how coding
is put into practice in educational sys-
tems around the world.

Computational Fluency
In most educational coding initiatives,
there is a recognition that the goal
should be broader than teaching spe-
cific programming techniques. Many
educational initiatives are framed
around the development of computa-
tional thinking—that is, helping stu-
dents learn computer-science con-
cepts and strategies that can be used in
solving problems in a wide range of
disciplines and contexts.22

Computational thinking is certainly
a worthy goal, but many initiatives focus
too narrowly on teaching concepts out
of context or presenting students with
problems that have a single correct an-
swer. In our research, we have seen how
coding becomes most motivating and
meaningful for students when they have
opportunities to create their own proj-
ects and express their own ideas.18
Through these experiences, children
develop as computational creators as
well as computational thinkers. We use
the phrase computational fluency to de-
scribe this ability to use computational
technologies to communicate ideas ef-
fectively and creatively.

Our ideas about computational flu-
ency have been informed and inspired
by the long tradition of educational
initiatives and research focused on en-
gaging students in learning to write.
Even though most students won’t grow
up to become professional journalists
or novelists, there is a strong consen-
sus that all students should learn to
write. Through writing, students devel-
op their ability to organize, express, and
share ideas—and they begin to see
themselves differently. The Brazilian

coding an animated story or program-
ming a robot to dance.

	˲ Too often, coding is introduced
by telling all students to copy the ex-
act same code, rather than encourag-
ing them to experiment, prototype,
and debug. On the Scratch website,
we once saw 30 identical projects
shared at the same time. At first we
thought this duplication of projects
was a problem with the website, but
then we noticed that each project had
a different username, and we realized
the projects were all from a single
classroom, where 30 students had fol-
lowed the same instructions to make
the same project with the same imag-
es and same code. Although this
classroom activity may have intro-
duced students to the basic mechan-
ics of coding, it did not provide oppor-
tunities for creative thinking and
problem solving.

	˲ Too often, schools allocate only a
brief period of time for learning to
code. Within this limited time, stu-
dents might learn some basic terms
and concepts, but they don’t have the
opportunity to put the ideas to use in a
meaningful way, and thus are unlikely
to be able to apply the ideas in other
contexts and other subjects. And in sit-
uations where coding is allocated more
time, the curriculum often pushes
teachers and students to shift from one
coding tool to another, rather than pro-
viding time for learning a tool well
enough for designing projects, solving
problems, and communicating ideas.
One large-scale initiative introduced
Scratch to fourth-graders for one hour
each week, then abruptly shifted to a
different coding language. After teach-
ers and students expressed frustration,
the curriculum was revised.

	˲ Too often, researchers and educa-
tors are adopting automated assess-
ment tools that evaluate student pro-
gramming projects only by analyzing
the code, without considering the proj-
ect goals, content, design, interface,
usability, or documentation. For ex-
ample, many are using an online
Scratch assessment tool that gives stu-
dents a “computational thinking
score” based on the assumption that
code with more types of programming
blocks is an indication of more ad-
vanced computational thinking. This
form of assessment doesn’t take into

In our research,
we have seen how
coding becomes
most motivating
and meaningful
for students
when they have
opportunities
to create
their own projects
and express
their own ideas.

NOVEMBER 2020 | VOL. 63 | NO. 11 | COMMUNICATIONS OF THE ACM 123

contributed articles

Figure 3. Taryn’s Scratch project modeling the water cycle.educator and activist Paulo Freire led
literacy campaigns not simply to help
people get jobs, but also to help peo-
ple learn that “they can make and re-
make themselves.”5

We see the same potential for cod-
ing. Most students will not pursue ca-
reers as professional programmers or
computer scientists but developing flu-
ency with coding is valuable for every-
one. As students create their own sto-
ries, games, and animations with code,
they start to see themselves as creators,
developing confidence and pride in
their ability to create things and express
themselves with new technologies.

Some advocates of computational
thinking downplay the value of coding.
They argue that there are many other
ways to develop computational think-
ing skills. But we have found that cod-
ing can be a particularly effective way
for students to become engaged with
computational concepts, practices,
and perspectives.2 When students code
their own projects, they encounter con-
cepts and problem-solving strategies
in a meaningful context, so the knowl-
edge is embedded in a rich web of as-
sociations. As a result, students are
better able to access and apply the
knowledge in new situations.

The Scratch programming language
and online community are designed
specifically to support the develop-
ment of computational fluency. Of
course, it takes time for students to de-
velop fluency. Many projects in the
Scratch online community are very
simple or poorly structured, created by
students who are just starting to ex-
plore the possibilities of coding. But
when students have the necessary time
and support for developing their fluen-
cy, we see how they can grow as both
computational thinkers and computa-
tional creators.

As an example, we would like to
share the story of a Scratch communi-
ty member named Taryn, who was first
introduced to Scratch at her school in
South Africa when she was 10 years
old. A few years later, in a science
class, Taryn used Scratch to program
an interactive simulation of the water
cycle, including two sliders for con-
trolling the evaporation rates over the
sea and over the land. In all, Taryn cre-
ated a dozen different variables for the
project (Figure 3).

Figure 4. Taryn’s tutorial on how to use variables.

Figure 5. One of Taryn’s Colour Divide animated stories.

124 COMMUNICATIONS OF THE ACM | NOVEMBER 2020 | VOL. 63 | NO. 11

contributed articles

almost too scared to get something
wrong and type the wrong thing and be
judged. But Scratch it’s like playing, it’s
like chucking things together, if they
don’t work, that’s fine. And being able
to make mistakes is part of the thing
that develops creative confidence.”

For us, Taryn’s work serves as an ex-
ample of how students, through their
work on Scratch projects, can develop
as both computational creators and
computational thinkers. We have seen
many other students in the Scratch
community go through similar learn-
ing trajectories. But many students
don’t receive the opportunities or sup-
port they need to become fluent with
computation and develop as creative
thinkers. How can we help more stu-
dents experience the joys and possi-
bilities of computational fluency?

Four Guiding Principles
In our research group, we have devel-
oped four guiding principles for sup-
porting creative learning and computa-
tional fluency. We call these principles
the Four Ps of Creative Learning: Proj-
ects, Passion, Peers, and Play.14

These principles provide a frame-
work to guide the design of technolo-
gies, activities, curriculum, communi-
ties, and spaces to support coding and
learning. Here, we explore the Four Ps
of Creative Learning through examples
from the Scratch community.

Projects. Provide students with op-
portunities to work on meaningful proj-
ects (not just puzzles or problem-solving
activities), so they experience the process
of turning an initial idea into a creation
that can be shared with others.

To us, it seems natural to introduce
coding to young people in a project-ori-
ented way, so that they learn to express
themselves creatively as they learn to
code. But many introductions to coding
take a very different approach, present-
ing students with a series of logic puz-
zles in which they need to program ani-
mated characters to move from one
location to another. When students suc-
cessfully solve one puzzle, they can move
on to the next. Students undoubtedly
learn some useful computational con-
cepts while working on these puzzles.
But learning to code by solving logic puz-
zles is somewhat like learning to write by
solving crossword puzzles. That’s not
the way to become truly fluent. Just as

students develop fluency with language
by writing their own stories (not just
playing word games), students develop
fluency with coding by creating projects
(not just solving puzzles).

Increasingly, schools are shifting to
a project-based approach to coding. In
one school, for example, fourth-grade
students created Scratch projects about
the book Charlotte’s Web, rather than
writing traditional book reports. In one
of the projects, a student programmed
a pig to move within the scene. To make
the pig look further away, the student
programmed it to become smaller, ap-
plying the art concept of perspective
and using mathematical calculations
to adjust the size of the pig. The project
cut across the curriculum, integrating
ideas from language, art, math, and
computer science. In other schools,
students have designed projects in
many different subject areas—creating
games about ancient Egypt in history
class, modeling DNA replication in bi-
ology, and creating animations of hai-
ku poems in language arts.

For teachers, it might be easier to in-
troduce coding through puzzles that
tell students whether they have correct-
ly solved the problem or where they
went wrong. Managing a project-based
classroom can be more challenging,
since different students will create dif-
ferent types of projects. Yet it is pre-
cisely this opportunity for developing
an idea from initial conception to
shareable project that enables young
people to develop as creative thinkers
and problem solvers.14

Passion. Allow students to work on
projects connected to their interests. They
will work longer and harder—and learn
more in the process.

We designed Scratch to support a
wide range of projects and interests—
from art, music, and animations, to
games, stories, and simulations. We
also made sure students can customize
and personalize their projects, by bring-
ing in their own images and sounds.

Why is this important? Different
children have different interests, come
from different cultures, and think in dif-
ferent styles. Supporting diverse path-
ways into Scratch is important to ensure
that all children, from all backgrounds,
can work on Scratch projects that are
relevant and meaningful to them. On
the Scratch website, you can see a wide

Through working on this project,
Taryn became inspired to help others
learn about variables. She decided to
create a tutorial project called Ya Gotta
❤ Variables and shared it in the Scratch
online community (Figure 4). As she ex-
plained in the notes that accompany
the project: “I love variables! They’re
extremely useful in programming, and
I wouldn’t have been able to make
most of my projects without them.
However, they’re a bit tricky to under-
stand—that’s where this tutorial can
help you!” Taryn also encouraged oth-
ers to experiment: “Have fun playing
around and experimenting with vari-
ables and booleans! The more you ex-
periment (and fail!), the more you will
understand and the easier it will be
for you to use variables to make your
projects awesome!”

Taryn became well known in the
Scratch community through a series
of projects called Colour Divide, set in
a fantasy dystopian world where peo-
ple are subjected to a test that deter-
mines their place in society (Figure 5).
Taryn collaborated on the initial Co-
lour Divide project with five other stu-
dents who she met in the online com-
munity. For Taryn, the project was a
way to explore important social is-
sues. When we interviewed Taryn, she
explained: “Growing up, I’ve definite-
ly seen the scars that apartheid has
left on my country and the people. I’m
really exploring that through the dif-
ferent characters that are a part of
this story.”

Taryn described the important role
that collaboration played in the devel-
opment of Colour Divide. “I set it up so
that other Scratchers could contribute
faces and voices and scenery and mu-
sic. It felt less like something that I
was making, more like something that
we were making together,” she said.
“I’ve just been constantly blown away
by the kind of support and collabora-
tion and sharing that happens in the
community. That’s one of the main
things that keeps me coming back to
Scratch every day.”

Through her work on Scratch, Taryn
has shifted the way she approaches
learning. “I’ve become more confident
to try new things and express myself—
and more comfortable with taking
risks and making mistakes,” she ex-
plained. “In other languages, you are

NOVEMBER 2020 | VOL. 63 | NO. 11 | COMMUNICATIONS OF THE ACM 125

contributed articles

countries with the same interests kept
me coming back to talk to them.”

Young people talk about multiple
reasons why the Scratch online com-
munity matters to them:

	˲ The community provides audience:
When young people share projects they
have made, they get feedback, encour-
agement, and suggestions from peers
in the community.

	˲ The community provides inspira-
tion: By looking at other projects on the
website, young people get new ideas
for their own projects.

	˲ The community provides connec-
tion: Young people make friends and
meet others with shared interests from
other cities and countries.

As a young person in the online
community reflected:

“When I used the website, I got in-
terested in the projects of others. This
is largely how I learned Scratch:
through remixing and sharing and cre-
ating. I made many friends here, who
remix my projects, give comments, and
have taught me new things.”

As participation in the Scratch com-
munity has grown, young people have
collaborated in ways beyond what we
had originally anticipated. More and
more young people have taken the ini-
tiative to connect, coordinate, and col-
laborate on projects and activities.
About a quarter of all projects on the
Scratch website are remixes, in which
students modify or add code to existing
projects.4 Some students form collab-
orative groups to create complex games
and animations that none could have
created on their own. Other students
have learned how to create projects
through crowdsourcing, asking others
in the community to contribute code,
images, or sound clips.17

A few years ago, a college physics
professor told us his children had be-
come actively involved in the Scratch
community. We expected he would go
on to tell us about the coding skills and
computational ideas they were learn-
ing. But that’s not what interested him
most. Rather, he was excited that his
children were participating in an open
knowledge-building community. “It’s
like the scientific community,” he ex-
plained. “Kids are constantly sharing
ideas and building on one another’s
work. They’re learning how the scien-
tific community works.”

diversity of projects, everything from in-
teractive newsletters to dance tutorials
to historical dress-up games to musical
beat machines. That’s an indication
that Scratch is supporting students with
a wide range of different interests and
passions. Similarly, when evaluating
Scratch classes or workshops, we use di-
versity of projects as a measure of suc-
cess—an indication that children are
working on projects they care about.

In an influential paper from the
1990s, Sherry Turkle and Seymour Pap-
ert emphasized that encouraging di-
verse styles of thinking and program-
ming is essential for promoting equity
and developing a more inclusive com-
puter culture.21 As they wrote:

“The computer is an expressive me-
dium that different people can make
their own in their own way … The diver-
sity of approaches to programming
suggests that equal access to even the
most basic elements of computation
requires accepting the validity of mul-
tiple ways of knowing and thinking, an
epistemological pluralism.”

We often refer to this idea with the
phrase “many paths, many styles.”
Some students make elaborate plans,
others explore and tinker. Some stu-
dents enjoy telling stories, others enjoy
making patterns. Some students are
excited about animals, others are ex-
cited about sports. To ensure coding is
for all, it is important to support these
diverse entry points and approaches.

Peers. Encourage collaboration and
sharing, and help students learn to build
on the work of others.

When our research group launched
the Scratch programming language in
2007, we launched the Scratch online
community at the same time. We want-
ed to support the social side of learn-
ing, providing students with opportu-
nities to learn with and from one
another. The online community has
grown into a dynamic space where
young people collaborate with one an-
other, sharing more than one million
projects and posting more than three
million comments each month.

We have learned from Scratchers
just how important the online commu-
nity is for motivating their ongoing par-
ticipation.18 As one Scratcher explained:
“I would’ve quit earlier, but then I made
friends … Of course, I had friends in
real life, but having friends in other

The online
community
has grown into
a dynamic space
where young people
collaborate with
one another, sharing
more than one
million projects
and posting
more than three
million comments
each month.

126 COMMUNICATIONS OF THE ACM | NOVEMBER 2020 | VOL. 63 | NO. 11

contributed articles

Putting the Four Ps into Practice
From our observations of Scratch ac-
tivities around the world over the past
decade, we have seen the value of Proj-
ects, Passion, Peers, and Play in sup-
porting the development of computa-
tional fluency. But we have also seen
that it is not easy to put these four prin-
ciples into practice within the realities
of today’s standards-based, assess-
ment-driven classrooms.

We have been encouraged to see a
growing number of teachers and
schools are finding ways to integrate
creative, expressive approaches to cod-
ing into their classroom practices. In a
public high school in Tacoma, WA, for
example, computer-science teacher
Jaleesa Trapp wanted to provide her
students with an opportunity to learn
computational concepts in the context
of projects that would be meaningful
to them. Jaleesa noticed that many of
her students enjoyed watching how-to
videos online, so she proposed that
they use Scratch to create their own
how-to tutorials.

The students created a wide range of
projects: how to crochet, how to use a
3D printer, and how to make a video
game, among others. The students de-
signed their projects to make them ac-
cessible to users with diverse abilities.
To create their projects, students need-
ed to research their topics, develop pro-
totype tutorials, test out their prototypes
with other students, revise their proj-
ects, and finally present their projects to
friends and family, as well as sharing
with a broader audience online.

This activity was well-aligned with the
four Ps, since students were working on
projects based on their passions, in col-
laboration with peers, in a playful spirit.
But the activity was also well-aligned with
computer science and engineering stan-
dards, since it involved iterative design,
testing, debugging, and refinement of
computer programs.3,12 Students gained
an understanding of important computa-
tional concepts and practices (such as us-
ing control structures and improving us-
ability) through working on their projects.

Jaleesa also wanted an assessment
method that would be meaningful to
the students. So, before they started
designing, she asked the students to
help develop a rubric for evaluating
their projects. They began by identify-
ing the features of how-to videos that

Play. Create an environment where
students feel safe to take risks, try new
things, and experiment playfully.

Scratch is designed to encourage
playful experimentation and tinkering.
As with LEGO bricks, it is easy to snap
together Scratch programming blocks
to try out new ideas, and it is also easy
to take them apart to revise and iterate.
Just click on a stack of Scratch blocks,
and the code runs immediately. There
are no error messages in the Scratch
programming editor. Instead, many
children learn new coding strategies by
playfully experimenting with different
combinations of Scratch blocks, see-
ing what happens when their code
runs, iteratively revising their code,
and looking at code in other projects.
We view “play” not as an activity but as
an attitude: a willingness to experi-
ment, take risks, and try new things.

When we have interviewed long-
time Scratchers, we have found that
many became engaged in coding by
“messing around” with Scratch.16 For
example, a long-time Scratcher ex-
plained that he learned about variables,
events, and other coding concepts “just
by experimenting.” Although it might
seem more efficient to teach concepts
through direct instruction, we have
seen that many students become more
engaged and gain a greater sense of
agency and confidence when they learn
through playful experimentation and
exploration. We do offer tutorials on
the Scratch website, but the tutorials
are designed to encourage students to
incorporate their own ideas and make
their own variations, not just follow
step-by-step instructions.

The Scratch community guidelines
emphasize the importance of being re-
spectful and friendly, and clearly state
that Scratch “welcomes people of all
ages, races, ethnicities, religions, abil-
ities, sexual orientations, and gender
identities.”19 Respectful communica-
tion and inclusiveness have become
norms that experienced participants
communicate to newcomers and oth-
ers.10 A respectful community is essen-
tial for accomplishing our goals with
Scratch. When people feel they are sur-
rounded by caring, respectful peers,
they are much more likely to play—
that is, to try new things and take the
risks that are an essential part of the
creative process.

We have been
encouraged to see
a growing number
of teachers and
schools are finding
ways to integrate
creative, expressive
approaches
to coding into
their classroom
practices.

NOVEMBER 2020 | VOL. 63 | NO. 11 | COMMUNICATIONS OF THE ACM 127

contributed articles

Supported Cooperative Work & Social Computing
(2016). ACM, New York, 1438–1449. https://doi.
org/10.1145/2818048.2819984

5.	 Freire, P. Pedagogy of Indignation. Paradigm, Boulder,
CO, 2014.

6.	 Israel, M., Pearson, J.N., Tapia, T., Wherfel, Q.M.,
and Reese, G. Supporting all learners in school-wide
computational thinking: A cross-case qualitative
analysis. Computers & Education, 82 (Mar. 2015), 263–
279; https://doi.org/10.1016/j.compedu.2014.11.022

7.	 Kafai, Y.B. and Burke, Q. Connected Code: Why
Children Need to Learn Programming. MIT Press,
Cambridge, MA, 2014.

8.	 Ke, F. An implementation of design-based learning through
creating educational computer games: A case study on
mathematics learning during design and computing.
Computers & Education, 73 (Apr. 2014), 26–39.

9.	 Khine, M.S. Robotics in STEM Education. Springer,
2017; https://doi.org/10.1007/978-3-319-57786-9

10.	 Lombana-Bermudez, A. Moderation and sense of
community in a youth-oriented online platform. 2017;
https://bit.ly/2NfpxEl

11.	 Maloney, J., Peppler, K., Kafai, Y., Resnick, M., and
Rusk, N. Programming by choice: Urban youth learning
programming with Scratch. ACM SIGCSE Bulletin 40,
1 (Mar. 2008), 367–371.

12.	 NGSS Lead States. Next Generation Science
Standards: For States, by States. National Academies
Press, Washington, D.C., 2013.

13.	 National Research Council. Education for Life and
Work: Developing Transferable Knowledge and
Skills in the 21st Century. National Academies Press,
Washington, D.C., 2013

14.	 Resnick, M. Lifelong Kindergarten: Cultivating
Creativity through Projects, Passion, Peers, and Play.
MIT Press, Cambridge, MA, 2017.

15.	 Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk,
N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum,
E., Silver, J., Silverman, B., and Kafai, Y. Scratch:
Programming for all. Commun. ACM 52, 11 (Nov.
2009), 60–67.

16.	 Roque, R. and Rusk, N. Youth perspectives on their
development in a coding community. Info. Learning
Sci. (Apr. 2019); https://doi.org/10.1108/ILS-05-
2018-0038

17.	 Roque, R., Rusk, N., and Resnick, M. 2016. Supporting
diverse and creative collaboration in the Scratch
online community. Mass Collaboration and
Education. U. Cress, H. Jeong, and J. Moskaliuk (Eds.)
Springer, Cham, Switzerland. 241–256; httpps://doi.
org/10.1007/978-3-319-13536-6_12

18.	 Rusk, N. Motivation for making. Makeology: Makers as
Learners., K. Peppler, E. Rosenfeld Halverson, and Y.B.
Kafai (Eds.). Routledge, New York, NY, 85–108.

19.	 Scratch Community Guidelines. 2018; http://scratch.
mit.edu/community_guidelines/

20.	 Sentance, S., Waite, J., Hodges, S., MacLeod, E., and
Yeomans, L. ‘Creating cool stuff:’ Pupils’ experience
of the BBC micro:bit. In Proceedings of the 2017 ACM
SIGCSE (Seattle, WA) 531–536.

21.	 Turkle, S. and Papert, S. Epistemological pluralism:
Styles and voices within the computer culture. SIGNS:
16, 1 (1990), 128–157.

22.	 Wing, J.M. Computational thinking, Commun. ACM 49,
3 (Mar. 2006), 33–35.

23.	 Yu, J. and Roque, R., A review of computational toys
and kits for young children. Int’l J. Child-Computer
Interaction. (Jul. 2019); https://doi.org/10.1016/j.
ijcci.2019.04.001

Mitchel Resnick (mres@media.mit.edu) is Professor of
Learning Research at the MIT Media Lab, Massachusetts
Institute of Technology, Cambridge, MA, USA.

Natalie Rusk (nrusk@media.mit.edu) is Research
Scientist in the Lifelong Kindergarten group at the MIT
Media Lab, Massachusetts Institute of Technology,
Cambridge, MA, USA.

Copyright held by author/owner.
Publication rights licensed to ACM.

they valued and decided together
which criteria were most important to
include in the rubric. By contributing
to the criteria for assessment, the stu-
dents developed a shared understand-
ing of the goals, and they were invested
in meeting them.

Jaleesa noted that many computer-
science initiatives evaluate students
based on how many different program-
ming blocks they use in their projects.
Jaleesa worried that focusing on this
metric might lead students to simply
add programming blocks to fulfill a re-
quirement, without understanding the
purpose of the different blocks. Instead,
the students in Jaleesa’s class used a
wide variety of programming blocks in
an authentic way. Because students
were designing how-to projects to sup-
port accessibility, they naturally needed
to coordinate multiple events, incorpo-
rate multiple types of media, and re-
spond to different types of user input.

The Next Decade
We are at a moment of great opportu-
nity but also great challenge. Even as
new technologies have flowed into
schools and as new coding initiatives
have been adopted, the core structures
of most educational institutions have
remained largely unchanged. If new
technologies and new coding initia-
tives are to live up to their promise, we
must break down structural barriers in
the educational system.

We need to break down barriers
across disciplines, providing students
with opportunities to work on projects
that integrate science, art, engineer-
ing, and design. We need to break
down barriers across age, allowing
people of all ages to learn with and
from one another. We need to break
down barriers across space, connect-
ing activities in schools, community
centers, and homes. And we need to
break down barriers across time, en-
abling children to work on interest-
based projects for weeks or months,
rather than squeezing projects into
the constraints of a class period or
curriculum unit.

Breaking down these structural bar-
riers is difficult. It requires a shift in
the ways people think about education
and learning. People need to view edu-
cation not as a way to deliver informa-
tion, but rather as a way to support stu-

dents in exploring, experimenting, and
expressing themselves, so that stu-
dents can develop the creativity, col-
laboration, and communication skills
that are needed to thrive in today’s fast-
changing world.

These changes in structures and mind-
sets will require efforts by many people, in
many places, at many levels. There are al-
ready teachers, schools, and even entire
districts that are implementing new, cre-
ative approaches to coding and learning.
We need to build on these examples to
support broader change. No individual
policy or individual school or individual
technology can bring about change on its
own. We need a movement in which
people in all parts of the educational
ecosystem—educators, administra-
tors, researchers, curriculum devel-
opers, toolmakers, and policymakers—
think about coding in new ways and
think about learning in new ways.

We are at a crossroads. Ten years
from now, we hope we can look back
and report on a decade of education-
al change, in which schools have pro-
vided students with the time, space,
support, and encouragement they
need to become fluent with new tech-
nologies, so that they can help shape
tomorrow’s society.

Acknowledgments
Many people have contributed to the
design, development, and support of
Scratch, particularly members of the
Lifelong Kindergarten Group at the
MIT Media Lab and the Scratch Team at
the Scratch Foundation. We are grate-
ful to the National Science Foundation
for supporting the initial research and
development of Scratch, and to the Sie-
gel Family Endowment, LEGO Founda-
tion, and other supporters for making
it possible to make Scratch available
for free for young people and educators
around the world.	

References
1.	 Bau, D., Gray, J., Kelleher, C., Sheldon, J. and Turbak, F.

Learnable programming: blocks and beyond. Commun.
ACM 60, 6 (Jun. 2017), 72–80; https://dl.acm.org/
citation.cfm?doid=3098997.3015455

2.	 Brennan, K. and Resnick, M. Using artifact-based
interviews to study the development of computational
thinking in interactive media design. Annual Meeting
of the American Educational Research Association,
Vancouver, B.C, 2012.

3.	 Computer Science Teachers Association. CSTA K-12
Computer Science Standards, 2017; http://www.
csteachers.org/standards

4.	 Dasgupta, W.H., Monroy-Hernández, A. and Hill, B.M.
Remixing as a pathway to computational thinking. In
Proceedings of the 19th ACM Conference on Computer-

Watch the authors discuss
this work in the exclusive
Communications video.
https://cacm.acm.org/videos/
coding-at-a-crossroads

