

This report made possible
with support from the

NATIONAL SCIENCE FOUNDATION

Directorate for STEM Education
Division of Undergraduate Education

and the
Directorate of Computer and Information Science and Engineering

Division of Computer and Network Systems - Education and Workforce Program

This material is based upon work supported by the National
Science Foundation under Grant Numbers 2039833 and
2039848.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science
Foundation.

PPiecing Together the Next
15 Years of Computing

Education

Adrienne Decker, Ph.D.

Mark Weiss, Ph.D.

Monica M. McGill, Ed.D.

Briana B. Morrison, Ph.D.

Manuel A. Pérez-Quiñones, D.Sc.

Monique Ross, Ph.D.

David Weintrop, Ph.D.

Aman Yadav, Ph.D.

Kris O'Donnell, M.A.

Christine Alvarado, University of California San Diego
Austin Cory Bart, University of Delaware
Brett Becker, University College Dublin (Ireland)
Melissa Dark, DARK Enterprises, Inc.
Leigh Ann DeLyser, CSforALL
Paul Denny, The University of Auckland (New Zealand)
Brian Dorn, University of Nebraska Omaha
John Dougherty, Haverford College
Wenliang (Kevin) Du, Syracuse University
Wendy DuBow, University of Colorado at Boulder
Stephen H. Edwards, Virginia Tech
Barbara Ericson, University of Michigan
Sally Fincher, University of Kent (UK)
Kathi Fisler, Brown University
Diana Franklin, University of Chicago
Christina Gardner-McCune, University of Florida
Joanna Goode, University of Oregon
Susanne Hambrusch, Purdue University
Amy J. Ko, University of Washington, Seattle
Shriram Krishnamurthy, Brown University & Bootstrap
Deepak Kumar, Bryn Mawr College
Collen Lewis, University of Illinois at Urbana-Champaign
Xumin Lu, Rochester Institute of Technology
Susan Lord, University of San Diego
Michael Loui, University of Illinois and Purdue University
Andrew Luxton-Reilly, University of Auckland (New Zealand)
Nicholas Lytle, Georgia Tech
Lauren Margulieux, Georgia State University
Monica M. McGill, Institute for Advancing Computing Education
Briana B. Morrison, University of Virginia
Manuel A. Pérez-Quiñones, University of North Carolina at Charlotte
Christopher Proctor, University at Buffalo
Yolanda Rankin, Emory University
Monique Ross, The Ohio State University
Jean Salac, University of Washington
Simon, University of Newcastle (Australia)
Andreas Stefik, University of Nevada, Las Vegas
Claudia Szabo, Univerity of Adelaide (Australia)
Jakita O. Thomas, Auburn University
Jan Varenhold, Westfälische Wilhelms-Universität Münster (Germany)
David Weintrop, University of Maryland
Aman Yadav, Michigan State University

iii

Table of Contents

Preface .. v
Introduction .. 1

Chapter 1: Evolution (or lack thereof) of Computer Science Curricula .. 3
Curriculum Guidelines .. 5

Figure 1: Recommendations from curriculum guidelines in 1968 5
Figure 2: Hours required in curricula published in 2001, 2008,

2013, and 2023 .. 7
Figure 3: CS degree requirements from Purdue University in 1968 .. 8
Figure 4: CS degree requirements from Purdue University in 2019 .. 8

Specialization of Degrees in Computing ... 9

Chapter 2: What Needs to Change .. 13
Preparing Ethical and Responsible Computer Scientists 16
Broadening Students’ Perspectives on the Role of

Computing in Society ... 20
Developing the Ability to Take Multiple Perspectives 24
Working with and for Those Outside Computing .. 25
Address Equity and Social Justice in Computing and

Computing Education .. 29

Chapter 3: How do we Change the Curriculum? 31
Challenge the Idea that Technology is Neutral .. 35
History of Engineering in Higher Education .. 36
Joint Humanities/Social Sciences and Computing Courses 37

Chapter 4: Beyond Changing the Curriculum 41
Embracing Technological Advances for Applied Knowledge 42
Retention Efforts/Supports with the Curriculum and

Pedagogical Practices ... 46
Hidden Curriculum ... 49
Intentionality to Recruit into Post-secondary Education 51

Chapter 5: Beyond the Classroom .. 53
Intentionality to Create Space for and Recruit into Informal Education ... 53
Enact Computing as a Fundamental Literacy ... 54

Conclusion: Looking Ahead .. 55

iv

https://cerfutureworkshop.wpcomstaging.com/summary-of-outcomes/

This report is the result of a multi-year effort sponsored by the
National Science Foundation (grant nos. 2039833 and
2039848). The original goals of the project were to bring
together thought leaders in Computer Science Education,
both researchers and practitioners from many different types
of institutions and in different positions and points in their
career to ruminate, deliberate, and postulate about what
computer science education research should look like in 15
years time. COVID had other plans. While we assembled a
team of over 40 leaders in the computing education space,
we were unable to travel during the first two years of this
effort, effectively crippling our ability to bring everyone
together for a big event. We persevered and met virtually in
smaller groups and created a series of small reports about
research directions in subfields of computer science
education. Those reports are available from the project
website (https://cerfutureworkshop.wpcomstaging.com/
summary-of-outcomes/).

However, what the series of reports failed to capture (due to
the disjoint nature of the small group meetings) was a vision
of what the field should be focusing upon. As such, we
convened a meeting of a much smaller group of participants
and worked with them over several months to shape a
document that could be a vision of where the field should be
headed. This document is the culmination of that part of the
effort. The document provides challenges and vision for what

v

vi

of helping to make a pile of academic writing accessible to a wider
audience. Her contributions to this effort are vast and her skills
are something we are in awe of every day. We thank the National
Science Foundation for their support of this project, especially
Paul Tymann, Jeff Forbes, and Victor Piotrowski who thought this
idea was worth funding and helped support our efforts to finish
this project.

Introduction

ChatGPT: It’s a term that’s barely a year old but one that is
already ubiquitous. And it is Large Language Models (LLMs)
like ChatGPT that could potentially have a seismic impact
on education, technology, business, and society as a whole.

in a string of technological advances that have revolutionized
our society over the last 50 years. What was once science

shows no sign of abating. But in the last 50 years, one area
has paradoxically remained somewhat stagnant: the way we
teach and think about computing.

This raises some critical questions; how do all these
advancements change the nature of work, the nature of the
work of a computer scientist? And then, in turn, how does
this impact educators? How do we have to adapt and change
to these new demands? And how do these realities impact
computing educators?

his report attempts to answer these questions

dramatically in decades .
We need to better understand how students learn computing,
how students thrive in a computing classroom and in
computing environments in the workplace. We also need to

1

understand how our marginalization of some students impacts
both them and the field, and ways to bring those who are
historically excluded into the field in meaningful and impactful
ways.

“What was once

become reality.”

Chapter 1: Evolution (or lack thereof) of Computer
Science Curricula

There are governing bodies both inside and outside of
the computing community that can significantly influence
the number of credits, content areas, and outcomes for
computing programs. At times, those requirements
can act as a barrier to innovation. The reports and resulting
curricula from these governing bodies often reflect the
tension of adding new topics while retaining legacy topics;
usually resulting in an overstuffed curriculum. Unfortunately,
this overstuffed curriculum acts as a barrier to broadening
participation (i.e., lack of entry points beyond the traditional
exclusive path). With each curriculum iteration there is an
opportunity to be creative in our approach to meeting the
requirements levied by the governing bodies while also
centering our desire to broaden participation in computing.
There is a propensity to do things “the way we always have”
but there is no doctrine that dictates that one course must
come before another (in most cases) or that calculus is the
only way to meet math requirements. Or that room cannot be
made for electives that span outside of the department or
college. To achieve this type of radical curriculum overhaul,
there must be a thorough and critical examination of the
curriculum for barriers to entry and graduation. Such critical
examination may yield opportunities for creating a curriculum
that allows for many entry points, that provides multiple
pathways for those seeking the theoretical or the applied,
and that can be easily coupled with other disciplines (outside
of engineering). A curriculum that is truly for all that aspire to
gain computational literacy.

3

“With each curriculum iteration there is an opportunity to
be creative in our approach to meeting the requirements
levied by the governing bodies while also centering our

desire to broaden participation in computing.”

Curriculum Guidelines

The content of current computer science degree programs
has evolved from the first computer science program (Purdue,
1962). The Curriculum Committee on Computer Science was
initially formed in 1962 as a subcommittee of the Education
Committee of the Association for Computing Machinery
(ACM). The Curriculum Committee published its first report,
“An Undergraduate Program in Computer Science, Preliminary
Recommendations,” in the September 1965 issue of
Communications of the ACM (Conte, et al., 1965). The first
full ACM Curriculum Guidelines were published in 1968
(Atchison, et al., 1981) and presented the recommendations
shown in Figure 1, along with eight recommended math
courses.

Figure 1: Recommendations from curriculum guidelines in 1968

5

Note the number of courses from this initial curriculum
recommendation that are still a holdover five decades later.
In the most current full ACM CS Curriculum guidelines (ACM/
IEEE-CS, 2013), the recommendations moved from courses to
a “Body of Knowledge” concept as shown in Figure 2.

Notice the continued growth in the amount of knowledge
needed to cover the entire “Body of Knowledge” - from 280
credit hours in the CC2001 recommendations to 308 (165 +
143) for CC2013. (We acknowledge that not all Tier 2 hours
are required to be covered, but this does not account for other
elective hours either.) The most recent ACM CC 2020 report
(ACM/IEEE-CS, 2021) moved the field toward considering a
competency-based model, eliminating the mention of courses
completely. While the newest report de-emphasizes the
course model, little is known about how to achieve these
competencies outside the traditional course model.

Consequently, at many institutions, the CS degree require-
ments have not changed much either. For example, examining
core CS degree requirements from Purdue University’s under-
graduate CS major in 1968 (Figure 3) when it was first estab-
lished and comparing it to today (Figure 4), there are many
similarities. Many degree programs still maintain a heavy em-
phasis on mathematical and technical computing knowledge.

To ensure that CS students develop critical perspectives
about the design and implementation of technologies, we
need to move away from an explicit focus on technical skill,
and think critically about the skills computing professionals
will need in the coming decades.

6

Figure 2: Hours required in curricula published in 2001, 2008, 2013,
and 2023. The 2023 curriculum is still in draft at the time of this
publication, but the numbers reflect the current breakdown for each
knowledge area.

7

d

d

8

Specialization of Degrees in Computing

As the computing field continues to expand, the tendency
has been to incorporate these new areas into existing
courses, thus covering more material in the same amount
of time; or adding more elective courses, giving students a
shallow breadth coverage of topics rather than a deep
understanding of core topics. This results in
undergraduates with foundational computing knowledge,
but limited experience within a single advanced topic. It
also means that, beyond the foundational knowledge,
faculty cannot guarantee students have any pre-requisite
knowledge from other advanced topics, creating a myriad
of individual courses that do not integrate across topic
areas. For example, a web development class cannot
necessarily guarantee that all students have had a
database course and therefore may not be able to
incorporate a database backend into the course. If
databases become required, then it narrows the set of
students who can take the course by introducing additional
prerequisites or by privileging students who have had
additional prior educational experiences beyond those
required by the program.

One way to address the expanding number of topics has
been to splinter the degree into different degree programs,
each with its own specialty. Within computing, we are
already seeing this occur. The most current ACM/IEEE
Curriculum Guidelines, produced in 2020 (ACM/IEEE-CS,
2021) cover many different computing degree programs:

• Computer Engineering
• Computer Science

9

• Cybersecurity
• Information Systems
• Information Technology
• Software Engineering
• Data Science

(formally published in 2021)

Nevertheless, Computer Science
remains the most common of these
academic offerings and often
includes pieces of the other types
of degrees in the form of technical
electives, certificates, tracks, or
minors. The splintering of computing
into different degree programs
comes with its own set of challenges.
Explaining the differences to
incoming university students (and
their parents) between degrees and the resulting career
paths for each can be difficult. Helping students navigate the
choice of degree programs, whether during their first term or
in their fourth or fifth term, can be challenging. Finally, and
perhaps most consequentially, creating specializations can
introduce additional barriers to computing fields for students
from historically excluded populations in computing as it
requires additional prior knowledge about the field before
entering university and can introduce more consequential
decisions earlier in the degree program.

In this proliferation of computing degrees, we differ from the
historical development of engineering programs. Many of
these computing degrees are often not in the same college.
Software Engineering and Computer Engineering can be
placed in the College of Engineering due to their connection

10

to ABET. Information Systems may be closely allied to Busi-
ness schools. Colleges of Information Science (iSchools) are
increasingly offering degrees in human-computer interaction,
data science, and social aspects of computing and technol-
ogy. Data Science, due to its strong foundations in Statistics
and many applications to other disciplines, seems to be
gaining some level of independence that the other
computing disciplines have not had. With all of these
degrees, it is not clear what connects us all under the
Computing umbrella. Is it programming? Is it the practical
application of computational solutions, analogous to
engineering “application of science to the common purposes
of life”? Are some of these disciplines a more applied
version of a Computer Science degree? Is the relationship
between the more applied versions and the mainstream
Computer Science similar to the relationship between
Engineering Technology and traditional Engineering
degrees?

We have no reason to suspect that additional new topics will
not continue to be discovered, which may in turn lead to
even more specialized computing degree programs. The
question becomes, what happens with the original Computer
Science degree program? Does it continue to serve the “one-
size-fits-all”, “jack-of-all-trades” need? Or can it too become
more specialized? But, if it doesn’t specialize, will the
“generic” degree become so abstract that it is irrelevant for
industry-bound graduates? If so, would this generic CS
degree be only relevant for the small number of students
attending graduate school? With the advent of micro-
credentials, certificates, and other non-academic credentials
(e.g., industry sponsored courses or development programs),
will these now be required for entry level computing

11

positions, even for those with generic computing degrees?

We believe that computing education and its many programs are
at a decision point. The amount of required knowledge (and
limited number of credit hours allowed) for a computer science
degree has reached a saturation point. We see that, in general, we
are preparing students for at least two distinct career paths:
software developer or computer scientist. The software developer
may be an applied computer scientist, using learned knowledge
and skills to create and develop software artifacts for industry and
society. The computer scientist is likely a more research-oriented
path, with more theoretical than applied knowledge. While there is
some overlap in the required knowledge for both, the skills
needed for developer versus researcher are quite different and
require different educational paths.

Chapter 2 What Needs to Change?

In the last 50 years, computing, and the technologies it
enables, has changed the world. This can be seen across
almost all aspects of life, ranging from how we work, how
we communicate, and how we relax, to how communities,
organizations, and countries operate. Almost no aspect of
modern society has been left untouched by the rise of
computing and technology. Further, this rate of influence of
computing shows no signs of slowing down. Instead, new
technologies with new capabilities are continually being
introduced. The rise of artificial intelligence and machine
learning are changing how we think of what is possible with
computing while the emergence of quantum computing
sits tantalizingly on the horizon, waiting to usher in a new
era of computing, computing capabilities, and a new wave
of impacts on individuals, communities, and societies.

Computing is now inextricably linked with society, with the
ideas and innovations emerging from the field having
direct and lasting impacts on the world beyond. These
influences can be subtle and nuanced or can precipitate
seismic social and societal shifts. Consideration of the
impacts of computing and technology has historically been
only a small component, or altogether absent from,
conventional Computer Science curricula and programs.
However, given the increasing impact and importance of
the field, Computer Science departments and programs
must acknowledge this reality and take concrete steps to
better prepare their students for the responsibilities that

13

Consideration of the impacts of computing
and technology has historically been only a

small component, or altogether absent from,
conventional CS curricula and programs.

accompany the skills their students are developing.

To design and develop computing tools that do not perpetuate existing
or introduce new inequities into the world, students need to under-
stand how individuals, communities, and society operate and comput-
ing’s role within and across these spheres. This understanding should
include both contemporary examples as well as historical context to
help students situate the impacts of computing both presently and in
the future. Looking at institutions of higher education, opportunities for
students to study these topics reside outside of Computer Science and
other Engineering departments. Instead, learning opportunities and the
associated expertise reside in departments focused on the Humanities
and Social Sciences. Fields including Anthropology, Sociology, Gender
and Cultural Studies, History, and Philosophy can help budding
computer scientists understand the impact their craft can and does
have on individuals, cultures, and
the world at large. As such, making learning
experiences that provide this larg-
er perspective and context as part
of computer science programs will
help prepare well-rounded and in-
formed computer scientists.

We recommend that computer
science educators critically
examine the curriculum and
develop ways in which these
types of perspectives can be
integrated with the learning
of technical knowledge. In the
following sections, we provide more
explanations and suggestions for
how this could be realized.

15

Preparing Ethical and Responsible Computer
Scientists
We know that biased data and models based on those data
can have unintended consequences. That idea should be
part of computing courses and curricula and should be
embedded within the context of coursework rather than
being seen as a separate knowledge and skill set. Computer
science educators need to incorporate socio-political
aspects of technologies into the computing curriculum rather
than treating these ideas as an isolated skill students need
to develop.

There is a growing ethical crisis in computing where the
design and deployment of technologies is causing harm,
particularly towards marginalized groups. From biases
in facial recognition technologies to sentencing software that
recommends higher sentences for black and brown
defendants, the biases and injustices that shape society are
being embedded into technology. Ruha Benjamin pointed
out how racialized data that gets embedded in technologies
is the “New Jim Code” (Benjamin, 2019). Yadav and Heath
(2022) also highlighted the invisible role computing plays in
oppressing and harming individuals from marginalized
groups and the need to re-examine design and
implementation of technologies. Computing education needs
to make criticality and awareness of potential harm or
injustice that technologies may introduce a central aspect of
preparing students. This includes educating them “on how
anti-Blackness and racism structure the technological
design process as well as use of the technologies” (Yadav &
Heath, 2022, p.454). Similarly, Ko and colleagues (2020)
suggested that, as part of gaining a degree in computer
science, students should be taught how to tackle the myth of

ww

16

Computing education needs to
make criticality and awareness

of potential harm or injustice that
technologies may introduce a

central aspect of preparing
students.

i

neutral technologies and know that “software is often wrong;
software always embeds its creators’ values and biases; and
software can only solve some problems, and in many cases,
creates new ones” (Ko et al., 2020, p. 32).

One way computing programs address this is through ethics
accreditation and curriculum requirements, such as ABET
accreditation standards for omputer cience programs. The
ABET accreditation standards state that “the graduates of
the program will have an ability to: recognize professional
responsibilities and make informed judgments in computing
practice based on legal and ethical principles.” Similarly,
the ACM/IEEE Computing Curricula 2020 report requires
professionalism and ethics as a permanent element of
any computing curriculum. However, the report itself only
provides a surface level discussion of what constitutes
ethics within computing. As an example, the report states
that professionalism and ethics in the “introductory courses
in the major could include discussion and assignments
on the impact of computing and the internet on society
and the importance of professional practice. As students
proceed in their second-year courses, they could start to
keep records of their work, as a professional might, in the
form of requirements, design, test documents, and project
documents such as charters and project reports.” (p. 76).
In practice, such a broad inclusion of ethics means that
computing programs can include only a cursory nod to ethics
in their program. In contrast, a more systematic integration
of ethics in the CS curriculum could start with students

perspective within humanities and then having opportunities
to consider ethical aspects of each project/assignment within
their computer science coursework.

ww

18

The ACM Code of Ethics is another guiding ethical framework
designed to “inspire and guide the ethical conduct of all
computing professionals, including current and aspiring

who uses computing technology in an impactful way.” (ACM,
2018). However, according to research, it is unclear how the

making, if at all (McNamara et al., 2018). This is true for both
undergraduate software engineering students as well as for
professional software developers and their software-related

with technological harms, the question remains: how do we
ensure computing students develop an ethical and moral
compass?

An important step towards addressing this issue is to help
computing students understand that technologies are
political in the same way that societies are. Biases and

and deployment of technologies (Yadav and Heath, 2022).
One mechanism to achieve this is to help students develop
the skills to critically question and evaluate technologies
before and during their design as well as dismantling them
after their deployment. For example, when developing
machine learning algorithms that use training data sets,
students should be aware of how biases can be introduced
and could potentially lead to harmful outcomes for some
people. A focus on how biased data and models can have
unintended consequences should be part of computing
curricula. This discussion should be embedded within the
context of machine learning coursework rather than being
seen as a separate knowledge and skill set.

ww

19

Broadening Students’ Perspectives on the Role
of Computing in Society

Most of the coursework a computer science student takes
en route to a degree in computer science is focused on the
intellectual and technical aspects of computing. Courses
teaching programming skills, algorithm analysis, data
structures, and computational theory live alongside topics
like compilers, databases, human-computer interaction,

constitute a computer science degree (see Chapter 1).
Often absent, or at least underrepresented, from the slate
of courses computer science students take are courses
considering the impacts of computing. “Impacts” is an
intentionally broader term meant to capture the various ways

very visible, such as the emergence
of social media as a mechanism for
sharing ideas and disseminating
information (or misinformation) and
the way smart phones reshaped
the way to navigate the world. At
the same time, these impacts can
also be completely invisible, such
as the way an individual’s data is
collected and sold, which can, in
turn, shape the advertisements they
see or the access they have to social

O’Neil, 2016).

Beyond the experiences of

20

individuals, consideration for how new technologies enabled
by computing can upend industries and economies also

This focus on the impacts of computing can be seen in the
organization of K-12 computer science instruction (K12
Computer Science Framework, 2016) but is less present as
students advance to post-secondary education. Attending to
impacts of computing is discussed as part of the most recent
guidelines for computing curricula published by a joint ACM/
IEEE task force (CC2020 Task Force, 2020); however, the
recommendations for how and where these topics reside
serves as only an initial step to helping computer science
students understand the full set of potential impacts of
computing at individual, community, and societal levels. A key
mechanism for accomplishing this in higher education is to
have computer science students take courses in humanities
and social sciences departments.

Bringing humanities/social sciences and computing
together allows students to see the limits of technologies
and technology-oriented solutions to complex issues and
also serve to ensure that students don’t see computing as
being isolated from the socio-political realities of our society.
Too often computer science and technologies are seen as
solutions to social and political issues. Consider the number
of times techno-solutionist approaches are suggested to
tackle school gun violence from metal detectors to AI-based
taser drones even as techno-solutions have been shown
to continually fail (Heath and Yadav, 2022). As such, it is
important for students to understand that computing and
technologies can’t always provide solutions to address socio-
political problems. To do this, it is essential that computer
science students learn from and with humanities/social

ww

21

Bringing humanities/social sciences and
computing together allows students to see

the limits of technologies and technology-ori-
ented solutions to complex issues and also

serve to ensure that students don’t see
computing as being isolated from the
socio-political realities of our society.

sciences faculty, who can lend their expertise to co-develop
curricula and courses at the intersection of humanities and
computing.

Providing computer science students opportunities to
understand the impacts that computing can and does have
on society is important given the role that these students
will play in creating and shaping the next wave of tools
and technologies. While computer science departments
can, and often do, offer a course attending to the impacts
of computing, sometimes as part of a larger professional

helping students understand the impacts of computing.
Looking beyond omputer cience departments, colleges of
Information Studies, ommunications departments, or
interdisciplinary campus entities with names like “Technology,
Society, and Behavior” or “Computing for the Arts and
Sciences”, provide classes focused on sociotechnical
systems, directly attending to the intersection of technology

in social sciences and humanities departments, while
often not directly related to computing or technology,
can lay the conceptual foundations for helping computer
science students understand the impacts of computing on
individuals, communities, cultures, or countries. Providing
opportunities for students to take courses from outside the
computer science department will prepare them to more fully
understand the potential impacts of computing and their
role in it as they move from academia into the world. It also
exposes them to differing worldviews and ways of knowing
to aid in the development of critical thinking beyond that in

ww

23

ww

Developing the Ability to Take Multiple
Perspectives

It is essential that students graduating from computer
science programs have the ability to understand and value
the perspectives of individuals from various backgrounds
and with differing life experiences. This includes perspectives
of individuals from different cultures, nationalities, socio-
economic classes, races, gender identities, religions,
political orientations, physical and neurological abilities, and
intersections across these and additional groups. This is not

experiences across all these groups and intersectionalities
but that students need to develop the skills to learn from,
empathize with, and make informed decisions that consider
the perspectives of and value the contributions of individuals
from these groups. This perspective-taking ability is essential
as the technologies and tools developed by students
graduating from computer science programs will be used
by and impact individuals from across all these groups. So,
it is imperative that graduating students have the ability
to consider their needs and desires,can think through and
consider the implications their work may have for them, and
can value the knowledge and contributions of these groups

Developing these abilities comes through both educational
and lived experiences. By this we mean these skills develop
through both intellectual exercises, such as taking courses
focused on exploring the lived experiences of others or
theories and ideas that can describe them, and by having

different perspective and/or set of lived experiences.

24

Working with and for Those Outside of Computing

Another productive outcome of having computer science
students take courses from the humanities and social
sciences stems not only from the intellectual growth
that will emerge from these courses but also from the
social experiences that will result. Enrolling in courses

omputer cience students will end up sitting alongside and
collaborating with students who may know very little about
computer science. It is also likely that in taking these courses,
students will work closely with students who have different
educational backgrounds, prior experiences with computing
and technology, and distinct cultural resources they bring to
the shared tasks.

These experiences of working closely with students from

students understand the value of multiple perspectives
on a project. In particular, students will learn the value of ideas
and input from those outside the computing discipline and
from individuals from groups historically excluded from
computing and STEM disciplines. Recognizing that computer
science programs are disproportionately populated by White or
Asian males from high socio-economic backgrounds, these
non- collaborations may serve as essential
opportunities for computer science students to collaborate
with students with very different sets of cultural resources and
prior experiences. In seeing a peer contribute essential ideas
and expertise unrelated to computing and/or very distinct from
their own experiences and contributions, a computer

ww

25

working on a project where they themselves would not have the
knowledge and experience to complete the project on their own.
In this way, the experience of group work and collaboration is not
merely an exercise in the distribution of work (i.e. the project can
be completed more quickly as the work is separate) but instead,
students will experience a project where the result is
fundamentally different due to differing perspectives and inputs.
The result is being able to see how collaborating with students
with different perspectives and ideas can shape the resulting
product and the final results of a collaboration will be something
that no one student could have accomplished alone.

A second valuable benefit to working closely with students from
outside computer science is that it will provide valuable firsthand
experience communicating with and working alongside those who
may not have the same level of computational or technology
expertise. In working closely with those without the same level of
computing expertise, it will help illuminate emerging expert
blindness that computer science students develop by only
working with other computer science students. The idea of expert
blind spots comes from the
education literature and
attends to the idea that
as expertise develops,
individuals forget what
it is like to not know
something, which in turn,
impacts how they think
and talk about an idea
(Nathan & Petrosino,
2003). In the context
of a computer science

26

student working with non-computer science students,
this may take the form of the computer science student
assuming their partner understands the idea of “versioning”
when working on a draft or the expectation that they can
easily shift between different software tools/platforms
as part of their shared work. This may also emerge in
social and collaborative aspects of the project, where a
computer science student might expect their non-computer
science peers to use the same time management tools or
communication and collaboration platforms (i.e., use Slack
or Discord rather than WhatsApp or email). Experiences
collaborating and communicating with non-computer
science students will prove valuable as communication is an
essential skill in the workplace.

Related to this last point, close collaboration with non-
computer science students will help prepare computer
science graduates for the professional world. While some

future careers are largely spent surrounded by other
computer scientists (e.g., graduate school, research-focused
positions), many students will end up in professional contexts
where they are regularly interacting with and communicating
with those from outside computing. For example, a computer
science graduate that takes a position working in the private
sector, be it a ortune 500 company or a start-
up, will end up frequently teaming with individuals with
different backgrounds, including designers, salespeople,
and colleagues working in product development, customer
relations, or advertising. Having educational experiences
communicating with and collaborating on projects with
individuals with these differing backgrounds will prove

ww

27

of computer science is that it will help make concrete the idea
of designing computing tools for non-computer scientists. This
idea stems from the ideas of creating personas as

human-computer interaction and design and are used as a
mechanism for representing and considering end-user needs
by creating realistic portraits of potential users (Miaskiewicz &
Kozar, 2011). Research has found that personas serve
as productive tools for supporting designs for others.
Having computer science students work closely with non-
computer science students, these collaborators can serve as

students are building tools for. Through these collaborations,

and perspective on how non-computer science students use
computing to accomplish tasks. That experience can serve as
a generative reference point for considering who is using the
tools being designed, what challenges they may face and the
support they may need. This experience can help put a face on
the idea that tools developed by computer scientists are often
not used by computer scientists, and thus, may not always be
used in exactly the way they are intended. Having computer
science students take courses outside of computer science
and collaborate closely with non-computer science students
can help future computer scientists and software developers
understand this and help inform their future decisions in
response to it.

ww

28

Address Equity and Social Justice in Computing and
Computing Education

In tech, the focus is often on how quickly innovations can be
disseminated. Therefore, little attention is generally paid to
the repercussions and detrimental impacts that they may
have on society, communities, and individuals. Technological
change produces results that are a trade-off between what
they give and also what they take away.

Systems supported by computing are often driven by
corporations and other institutions that may lack the
motivation and, therefore, the will to adequately consider and
respond to the ethics and social responsibility in the systems
that they create and sustain. This has already led to
additional marginalization of groups who are not part of the

that the creators have enthusiastically embraced and upheld
(Kaspar, et al, 2023).

Additionally, radical shifts in computing are being driven by

these radical shifts are expected to continue. These shifts

inspection into how they contribute to equity and inequities,
justice, and injustice.

Infusing ethics and social responsibility into computer science
education can be a powerful method for ensuring that future
professionals contemplate the full implications of their
systems. Despite this call for action having been raised
decades before in computing education (Granger, et al,
1997), it remains wholly unrealized. Over the next 15 years,

ww

29

computer science education must consider how technology
 of

communities and individuals, especially those who are not
part of the technological change. Further, it must ensure that

aware of how they as an individual and their communities are
impacted by technology.

IIIIIIIInnnnfffusssiiiiiiinnnnggggggg eeeeetttthhhhiiiiiiiiiiiiiiiiiicccccsssssssss aaaannnnnnnnnnnnnnnnnnnnnnnndddddddddd sooooooocccciiiiaaaaaaall rresponsiiiibbbbbbbbbbbbbbbbbbbbbbiiiiiiiiiiiiiiiiiiiillllllllllllllllllllllliiiiiiiiiiiiiiitttttttttttttyyyyyy iiiinnntttoo
cccommmmmppppuuuuuuuuuttttttttttteeeeeeeeeerrrrrrrrrr sssssssssssssssssssccccccccccccccciiiiiiiiiiiiiiiieeeeeeeeeennncccee eedduuccaattiioonn caaan bbbbbeeeee aaaaaaaa pppppppppppppppppoooooooooooooooooowwwwwwwwwweerrffuull
mettttthhhooddddddddddddd ffforr eennssuringg ttthhhaatt ffuuttttuuure proooffeeeeeeeessssssiiiiooonnallss

coooooonntteemmmppplattee tthhee ffuullll immpplliiiccccaaations oofff tthhheeeiiiirrr
ssyysstteemmss..

30

C 3: How do we Change the Curriculum?

The role computer science plays in the design of technologies
that lead to disproportionate harm towards marginalized
communities requires that students understand unintended
consequences of their work and develop an ethical framework
that provides them with the tools to question technologies and
even dismantle them if needed. This means that ideas,
perspectives, and frameworks from the humanities/social
sciences need to be part of core computer science curricula
and not just something that is left for the margins of a
computing degree program. In short, bringing humanities and
computing together within undergraduate computer science
degrees requires a re-shift away from just developing technical
skills to developing critics (Waters, 2021).

Aspirations of being an equitable and just discipline that
serves humanity can only be achieved with intentionality.
Equity and justice are a deliberate and distributed effort
towards serving all through socio-technical solutions and
to providing opportunities for educating the citizenry. An
equitably educated citizenry will be well-informed in making
decisions and will be attuned to both the benefits and harms
of technology.

While there are multiple definitions of equity as well as how
the definition is operationalized, we adopt the following
definition: “...the guarantee of fair treatment, access,
opportunity, and advancement while at the same time striving
to identify and eliminate barriers that have prevented the full
participation of some groups. The principle of equity
acknowledges that there are historically underserved and
underrepresented populations and that fairness regarding

31

these unbalanced conditions is needed to assist equality
in the provision of effective opportunities to all groups.”
(Seramount.com, 2020, online) Bravemen and Gruskin

in principles of distributive justice” and move deeper
into how equity can be operationalized within a given

In the context of technology, justice can be viewed as
economic, political, and social. When considering the words

sense, is not a static value but an ongoing methodology
that can and should be incorporated into tech design.
For this reason, too, it is vital that people engaged in
tech development partner with those who do important
sociocultural work honing narrative tools through the arts,
humanities, and social justice organizing.” (Benjamin, 2019,

32

An equitaaabbbllyy eeedduuccaatteedd cciittiizzeenryy wwwill
be well-infooorrmmeedd iinn mmaakkiinnggg ddeecissssiiions

and wwwiiillll bbee aattttuunneedd ttoo bboootth tthhhhee

33

impacted by technology as well, who also deserve the equal
right to be educated about how algorithms and the resultant
technologies work and how they impact their everyday lives.

An equitable and just vision of computing education must

• What should be taught, including socially responsible and
ethical content,

• Who should be taught and who should be teaching,
including barriers in place that must be removed for
anyone to learn and to teach, and

• How it should be taught, including curriculum and
pedagogy that meets the needs of all learners.

This vision directly aligns with the National Science

the national health, prosperity, and welfare; to secure
the national defense; and for other purposes” (National
Science Foundation, 2018, p. 5). Our nation’s best approach
to combat inequities and injustices are through strong
computing education initiatives for all citizens, and these
educational aspects to address this need directly align with
the NSF’s focus on societal impacts and the STEM workforce.

There are a multitude of well-documented barriers that stand
in the way of the United States achieving a citizenry educated

• Inequitable preK-12 educational system that is inextricably
linked to families’ income levels as it is funded based on
local property taxes.

•

34

• Increasing usage of technology to spread misinformation
about individuals, groups, and societies, with greater
spread of hate against marginalized groups.

• Increasing usage of technology to spread misinformation
about the sciences.

• Increasing wealth gap.
• Increasing destabilization of our democracy.

To address these barriers, we present key aspects for
computer science education that must be considered over
the next 15 years. This includes challenging the idea that
technology is neutral, addressing equity and social justice
in computing and computing education, understanding that
computing is a fundamental right, and addressing the
needs for effective and equity-focused formal and informal
education.

Challenge the Idea that Technology is Neutral
Technology has never been neutral. The division between
those who wield technological power and those that are
more likely to be subjected to its failings has only grown in
recent years, and the slowly growing proliferation of
artificial intelligence, machine learning, and data science
has only exacerbated this division (Postman, 1998). Yet,
while there is ample evidence of the harms that rapidly
evolving technological change has already caused on those
outside of the power structure, computer science education
largely ignores the lack of neutrality of technology and the
harms that it can lead to, which only further disadvantages
a vast swath of communities and individuals.

35

Over the next 15 years, computer science education must
provide time and space for students to investigate critical
questions about the lack of technological neutrality and
explore its implications within the context of their learning.

History of Engineering in Higher Education
Given the tensions computer science departments are
facing, we can look to other disciplines to see how they
have resolved similar challenges. One obvious discipline to
examine is that of Engineering.

Academic programs offering engineering go back to early
years of education in academia in the United States

frameworks from Europe. New programs emerged as needs
arose in society, e.g., space exploration created the need
for aerospace engineering, industrial revolution increased
the need for civil engineering, the 2nd industrial revolution

the content of the curriculum and the length of the degree
varied over history. Early degrees were seen as too applied to
be part of a four-
year degree. At one
point, engineering
curricula
integrated
humanities as a
critical component

was an integral
part of the growth
of engineering

36

computing is facing, a bloated curriculum that forced changes
in curriculum designs and goals, moving many of the required
humanities out. Somewhat similar to computing curricula,
engineering curriculum design was largely designed and
created by professional organizations. In the last few decades,
there has been a shift in emphasis from science to design
(e.g., practice). Recent developments include the growth
in Engineering Technology, a more applied -year degree
than the traditional Engineering degrees. Both engineering
technology and engineering degrees are accredited by ABET
with Engineering Technology being more directly tied to the
practice of engineering, using current tools and practices.

to other disciplines for ideas. Many have compared computing

computing is related to software development. One involves
design, apprenticeship, and critiques through shared values,
the other involves problem solving due to physical, monetary,
and resource limitations. Perhaps we should explore the
medical education model - a generalized degree followed by
apprenticeship in a specialized area.

Joint Humanities/Social Sciences and Computing
Courses

One mechanism for engaging computer science students with
content from humanities/social sciences is to develop and
offer joint humanities/social sciences courses. These courses
would be cross listed between computing and humanities/
social science departments and cover topics at

37

Systems & Design, Democracy in the Computing Age,
Social Data Science, Ethical Foundations of Computing,
Communications & Computing, and Technology & Human
Development, explore topics at the intersection of computing
and humanities/social sciences. When developing these
types of joint courses, it is important that they serve both
humanities/social science goals and computer science
goals rather than prioritizing pushing computing concepts
into other disciplines. Computing concepts should be used
to enhance disciplinary teaching and learning goals within
humanities. Identifying content and developing courses that
are mutually supportive is a key characteristic of these types
of joint courses. In taking these jointly designed and offered

hand experience exploring how concepts and practices from
computing can be applied outside of a stand-alone computer
science context. The cross listing of courses also means
these courses can attract students from and other disciplines
to work and learn together, providing valuable experiences,
as discussed previously in Chapter 2.

An effective approach for creating joint humanities/social
sciences and humanities courses is through co-teaching.
Recruiting two faculty members, one from computer science
and the second from the partnering discipline would leverage
both sets of background and knowledge. This co-teaching
model can lighten the load for one faculty member creating a
brand-new course on their own while also making it possible
to cross-list courses between two departments that do
not have faculty crosslists. This greatly expands the list of
possible cross listed courses as it will not rely on having a
single faculty member with expertise in both areas. While

38

some would argue that the recent push for CS+X programs
addresses this need, this approach falls short as it prioritizes
computer science as a mechanism to contribute to and

opportunities to advance the discipline with computing power.

Another way to bring humanities and computer science
together is to revamp degree requirements in computer
science to encourage students to take courses from non-
STEM disciplines that would allow computer science students
to expand their understanding of social, political, historical,
and economical issues. This strategy takes advantage of
the fact that useful and
impactful humanities
and social science
courses already exist on
campus for computer
science students to
take. It also has the

the computer science
department to create
and offer new courses.
This is important given
that many computer
science departments
are already struggling
with rapidly growing
enrollments and

39

they are interested in from across campus. A result of this

science courses will end up collaborating with their peers
who have taken different humanities/social sciences
courses. This means a student that took a course in the
communications department can work alongside students
who have learned theories from sociology, philosophy, or
anthropology, thus further expanding their knowledge of
humanities and social sciences.

40

Chapter 4: Beyond Changing the Curriculum

Given the impact of technology on society, equity and social
justice need to be central to how we engage in formal
education spaces. Aspirations of an equitable discipline
require deliberate and distributed attention to curriculum
(explicit and hidden), recruitment, retention, and pedagogical
considerations in computing education.

Many of the pedagogical practices used in classrooms today
were also used in classrooms 40 years ago. How many
courses still revolve mainly around two or three lectures per
week with programming assignments and two or three exams
for assessment? Missing from this approach is the adoption
of research-based practices such as peer instruction, pair
programming, and mastery learning. What is required to
advance the curriculum design and instructional practices of
the discipline?

We claim that programming assignments haven’t changed
much, but the infrastructure around programming
assignments has changed significantly (e.g., open source,
source code repositories, automated graders). But the nature
of assignments (e.g., large programming problems to be
completed in isolation) have not changed much. With the
disappearance of the computer lab, we no longer have
communities of practice among students, as they often work
alone on their personal laptops. The collaboration among
students now happens online and is often limited by who you
already know. Even the practice of use-your-own equipment
has become an issue as we have extended the required
infrastructure to include continuous wireless access. Finally,
our curriculum largely ignores prior knowledge, giving an

41

advantage to those students that come from more privileged
backgrounds. And now, with the proliferation of LLMs (Large
Language Models), many of the tried-and-true problems that
have historically been assigned in courses can be solved by
the LLMs in a matter of seconds.

The way computing education is taught is often driven by the
values and beliefs that the instructor holds, which can further
exacerbate exclusivity. Pedagogical practices must be reflec-
tive of quality needed to enable students to succeed while
simultaneously being aware and open to the many ways in
which students learn, which is often linked to their lived expe-
riences.

Embracing Technological Advances for Applied
Knowledge

As is evident in the slow adoption of research-based
pedagogical practices within the computing classroom,
computing instructors are often slow to embrace
technological advances. This is often because adopting new
pedagogical practices or embedding new technological
products requires re-working all or a large portion of the
course design. Want to try peer-instruction? Great, re-work all
your presentation materials to include questions (which you
have to develop along with appropriate distractors). Then find
a tool to allow you to track answers from students and
incorporate that into the lectures. Do you want to try using an
auto-grader for your assignments? Great, pick one and then
start coding up your test suites for all your assignments -
after setting up the development environment. With faculty
already over-committed and dealing with burgeoning
enrollments, reworking the major components of an existing

42

class without additional time isn’t a reasonable request. And
while most instructors do work on class preparation during
breaks, this usually involves upgrading to the most recent
interpreter / compiler / textbook version and ensuring all the
code examples still work as intended. The point here is that
the underlying tools within computing (operating systems,
compilers, interpreters, IDEs, etc.) are always being updated
and changing, requiring significant effort just to keep up and
maintain the status quo each semester.

Incorporating new pedagogical or technological solutions into
a course requires an even
larger amount of time: it’s
basically equivalent to
creatinga brand new course.
However, with the emergence
of generative AI and its
applications to programming
and software development
more generally, all computing
instructors need to begin to
rethink what they teach and
how they assess knowledge
and skills in their courses. With the advancement of tools
and technologies, some topics morph from being core
knowledge into research topics. Consider the concept of
creating a simple website, or single webpage to be displayed
through a browser. Initially, writing HTML with text editors
was taught as a way to create the desired result (and of
course, every computing major worth their salt should be
able to create a web page!). Then came tools to simplify the

43

website creation process (DreamWeaver, FrontPage). Now,
there are companies built on the ability to create entire
websites through drag and drop, WYSIWYG interfaces (Wix,
WordPress, etc.). The knowledge and skills to create a
website have changed dramatically.

Does anyone still have an HTML course or unit in one of their
courses? No - because the tools have made the task so easy
that it doesn’t require specialized knowledge. We may be
reaching that point with other topics - programming
languages, compilers, perhaps even programming.

Thirty years ago, it was probable that some percentage of
computing majors would eventually work on writing operating
systems, compilers, or other system-based software. Today,
few, if any of our computing majors (with a bachelor’s
degree) will develop a new programming language or
compiler. Operating systems and compiler construction are
research topics for computing faculty and graduate students.
Yet, how many degree programs still require all computer
science majors to take a class in operating systems or
compilers where students build an operating system or
compiler? Similarly, we see specific areas of programming
languages, like comparing the implementations of static and
dynamic typing across programming languages as small,
nuanced differences with obscure languages that most
software developers will never encounter.

As the tools advance, the content of curriculum and specific
courses also need to change. Just as we likely don’t teach
HTML anymore, soon we may not need to teach for-loops
or if-statements. Generative AI tools have the potential to
completely change what and how we teach introductory

44

GGeeeennnnnnneeeeeerativve AI tools have thee ppootteennttiiaall ttoo
ccoooommmmmmmmmmmmmmmmppppppppllllleeeeeeeeeeeeeeeeeeeetttttelyy change wwhhaat and hhooww wwee tteeaacchh

inttrroooooooooooddddddddduuuuuuuuuccccctttooooooooooooooooorrrrrrrrrrrrry pprrooogggggrammmiing as mucchh aass tthheeyy mmaayy
cchhhhhhhhhhhhaaaaaaaaaaaaaaaaaannnnnnnnnnnnnnnnnngggggggggggeeeeeeeeeeee hhhhhhhhhhhhhhhhoww sssssttttuuuuuuuudddddddentss learn to wwrriittee eessssaayyss..

programming as much as they may change how students
learn to write essays. Just as the calculator changed
whether students should memorize math facts, how the
computer keyboard changed whether students should learn
to write in cursive, and search engines changed the need to
understand how a dictionary is ordered, generative AI tools
may forever alter what students need to know about
programming. It will be far more important to be able to
construct the most appropriate prompt and evaluate the
result for correctness rather than develop an algorithm from
scratch. If, and how we adjust our teaching and course /
curriculum content to incorporate these and future tools will
define the future of the discipline.

Retention Efforts/Supports with the Curriculum
and Pedagogical Practices

It is important to have a Computing student population that
reflects the full breadth of society, welcoming students from
differing backgrounds and with diverse ranges of prior life
and cultural experiences. This means that active
recruitment and support of students who have historically
been excluded from formal computer science educational
contexts is an essential component of any effort to help
prepare computing students for responsible professional
conduct after graduation.

The complementary challenge to recruitment is retention.
Retention in formal computing education spaces is a
complex systems problem with many factors that contribute
to a student’s retention. However, we suggest there are two
spaces that can have high impact towards retention:
pedagogical practices in the classroom and structures and
supports.

46

Pedagogical innovation is one way to retain students in the
field of computing. Pedagogical innovation may include
the adoption of evidence-based practices on a small
scale or even complete overhaul of course designs. This
transformation should be led by first
education with the same attention to equity and social justice
as conformance to curriculum accreditation. We know that
past (and in some cases current) pedagogical practices
(e.g., delivery and assessment) are full of known inequitable
practices - from few assessments (resulting in high stakes
exams) to grading on a curve. These approaches to assessing
learning are not effective and are instead widening the gap in
achievement in computing. To address these inequities,
exploring evidence-based pedagogical practices from other
fields is a necessity. While there may not be a direct transfer
of practices from one field to another, we must explore
approaches like culturally relevant pedagogy to inform the
work we do in computing education.

Given the unique space that computing education inhabits,
we must critically examine the practices so prevalent in the
discipline for opportunities to be more mindful of how we
present material and the ways in which our assessment
methods are misaligned with our outcomes and objectives as
a discipline. The adoption of new and innovative pedagogical
practices has the potential to benefit all computing students
and could yield higher retention rates in the field. When
considering the boom in enrollments that many institutions
are grappling with, this becomes complicated, but should not
be ignored. We must work to ensure, in the case of enormous
class sizes, we do not neglect to keep equity at the forefront of
designing and executing pedagogical practices in
the classroom.

47

Structure and support are other means of increasing retention in
computing. Structure and support in this context pertain to both
faculty and students. To achieve the ambitious goals related to
pedagogical transformation, faculty will need professional
development support, teaching support (graduate teaching
assistants, undergraduate teaching assistants, instructional
designers), community support, and administrative support
(time, space, and recognition for innovation). Exploring ways to
create communities of practice for faculty to navigate

48

transformation in the classroom is a form of support for
faculty. Likewise, reimagining support for students that is not
limited to “office hours” is also critical to retention. The
development of communities of practice both inside and
outside of the classroom helps with situated learning, sense
of belonging, and development as professionals in the field
of computing. Likewise, investigating the utility of creating
communities of practice or spaces that center minoritized
populations in computing might aid in retention efforts.

Hidden Curriculum

Critical examination of computing should not stop at the
explicit curriculum (courses, outcomes, sequences) but must
also include the hidden curriculum. The term hidden
curriculum refers to the implicit academic, social, and cultural
messages, unwritten rules and unspoken expectations, and
unofficial norms, behaviors and values that are transmitted to
students in the context in which all teaching and learning is
situated. This starts with the competition inherent to
admission caps at universities that signal a culture of
competition and is underscored by assessment techniques
like bell curves. This includes the glorification of the myopic
computer science participation - this notion that students
must eat, sleep, and breathe computing to be successful.
These hidden messages, norms, and values can be barriers to
engagement for anyone who does not wish to engage in
competition as a means of achieving their occupational
pursuits.

i 49

In addition to the hidden curriculum, there are the ambient
cues that make up the computing environment, i.e., pictures
on the walls of computing heroes that are not inclusive
(mostly men) and material we use that only leverages
traditionally masculine disciplines or context (e.g., fantasy
football, Minesweeper) - these not only have the potential to
alienate women but also international students that may lack
the context. Likewise, projects that have latent racism that if
not contextualized appropriately, can turn away populations
that are targeted in ways that skew the data (i.e., crime rate
prediction).

“The hidden curriculum combined with
ambient cues act as warning signals and

signs to students, leading to high attrition
rates among students whose ideas and
voices have been historically absent in

 f

Hidden curriculum and ambient cues are often
communicated via our syllabi (policies or absence of policies),
assignments (see examples given above), assessments
(high stakes assessment, i.e., only a midterm and final),
classroom culture (gamification of engagement in the class),
assumptions of prior knowledge, and interactions (e.g.,
instructor-student, student-student). Curricula, both explicit
and implicit, are laden with messages to students about who
belongs and what can be achieved with computing. To appeal
to a broader audience (this includes the invisible identities,
e,g, our LGBTQ+ students) a critical examination on both
fronts is a necessity.

50

Intentionality to Recruit into Post-secondary
Education

With exponential growth in computing-related fields,
recruitment has not been viewed as a critical matter needing
to be addressed. The approach has largely been to manage
the numbers of students currently in the field – how to teach
more people with the same number of resources. The
challenge being that this approach neglects the absence
of diversity in the field. The patterns of participation remain
largely unchanged with women, Black, Latiné, and Indigenous
students grossly underrepresented in the field of computing.
Towards the goal of equity, we must explore, develop, and
implement intentional means of reaching, inspiring, and
recruiting these populations into the field of computing. For
example, if your university population is 50% women, what
are some strategies that you can leverage to increase
engagement with the university population to increase
participation of women in computing? Does it include active
recruitment in fields that are overrepresented by women
e.g., psychology, biology? Does it include the introduction
of an X+CS curriculum that bridges these fields to expose
more women at the university to this lucrative and impactful
field? Likewise, is your institution in proximity of a minority-
serving institution (MSI)? Could you be building relationships/
curriculum/programs with these institutions that are mutually
beneficial that could establish a pathway for their students
and expand the diversity of your program?

The key to these initiatives is first understanding the
landscape of your institution - local community (who do you
serve as an institution?), university (what is the gender, racial,
ethnic composition of your university?), departmental (same

questions as university), programmatic (also same
questions). This information will allow you to determine low
hanging fruit (things you can easily address - e.g., most of our
diverse-identifying students come via transfer and we have a
requirement that impedes their transition) and more strategic
goals (e.g., we have an HBCU in the state that we can and
should work on developing a partnership with).

There should also be attention to intersectionality - a
department might determine that they have achieved gender
parity but upon closer examination their population is still
largely White. How can we now work towards diversifying the
women in our program (see MSI partnership suggestion
above)? This makes the efforts towards diversity explicit and
intentional.

52

Chapter 5: Beyond the Classroom

We assert that computing has become a fundamental
literacy. As such, it is time to recognize that the resources
needed to complete a post-secondary education is too high
for many people, both in terms of money and time. It is also
time to recognize that technological change is rapid, and
that continuing education is critical for all citizens to stay
abreast of these changes that can adversely impact them.
Education outside of the walls of formal education can provide
a meaningful way to provide computing-related skills and
knowledge, particularly if that education is freely available to
all citizens.

Intentionality to Create Space for and Recruit into
Informal Education

There are several types of informal education being currently
offered, such as through coding bootcamps, online courses,
and even libraries. Some of these are focused on using
software or hardware, while others are directly teaching
software development and/or programming. To ensure a
workforce that is adequately trained in the rapidly changing
skill sets needed for computing, it is critical that high-quality
resources and supports are put into place to provide this
training to any citizen who wants it, whether they are a student
studying computing at a postsecondary institution or a person
who wishes to change careers after obtaining a postsecondary
degree. While providing access to virtual training systems or

encourage citizens to participate in this training.

53

Enact Computing as a Fundamental Literacy

diSessa (2000) argued that we need to think about
computing in terms of literacy, what he called a
“computational literacy” that will have a profound impact
on society. Drawing parallels to the societal shift that
accompanied the democratization of numerical and algebraic
literacy, the emergence of widespread computational literacy

operates and computing’s role in it. In making this argument,

arguing that computational literacy needs to be at the scale
of “mass literacy with the written word, which permeates not
only all professional intellectual activity in STEM, but almost
all learning and instruction in STEM” (diSessa, 2018, p.
4). Similarly, others have argued for computational literacy
that should be for everyone and goes beyond technology
careers as an endpoint to “include vocational training, civic
engagement, and creative expression as possible options”
(Kafai & Proctor, 2022, p. 3). Rethinking computational
literacy from these perspectives will require moving away
from just a focus on computational and technical skills to
broadening students’ perspectives through a humanizing
approach that incorporates social, cultural, and political
aspects of technology.

While considering the numerous pathways for computing in
postsecondary education and the lifelong education that is

a three-fold need to consider educating all citizens about
computing as a fundamental literacy. This education is similar
to mathematics and language arts, and it must be prioritized

54

as a matter of equity, justice and national prosperity.
First, our democracy relies on the power of its people to make
informed decisions in free elections that are secure and safe.
These fundamental democratic rights are dependent upon
an equitably educated citizenry who are aware of the lack
of neutrality in the technology that they use as well as the
security and privacy of those technologies.

Second, our nation depends on our technological
infrastructure that increasingly contributes to our defense,
gross domestic product, labor workforce, economic

more. While our fundamental rights in a democratic nation
are becoming more and more technologically vulnerable,
we are seeing the growth of more people employed by the
computing industry. In 2021 the U.S. Department of Labor
tracked 10 occupations related to computing, and 9 of these
have projected growth of 4% to 35% over the next decade
(U.S. Department of Labor, 2022).

Finally, an educated citizenry in which all people have access
to, participate in, and have positive experiences learning
computing will provide knowledge and economic opportunities
to all people as our nation continues to shift from manual
to automated labor. A citizenry untrained in computing will
be without hope for economic opportunities, and this lack of
hope can contribute to civil unrest due to the real as well as
perceived injustices.

55

Conclusion: Looking Ahead

By recognizing the need for computing to be for all because it
impacts all, we can begin to reimagine what
could and should be. We need to make sure that both those

impacts of computing in their lives. They will either be the
creators or consumers of that technology (or both) and the

more jobs will require knowledge of computing, knowledge of
how computing looks today, not how computing looked when

we need to embark on a journey that will substantially
overhaul the way we teach and what we teach. To do so, we
should focus on the following:

• Update the curriculum so that it is responsive to the fact
that technology will continue to change and that the skills
needed by our graduates will change.

• Think critically about what is and is not important in the
curriculum. We need to consider what skills and topics
enhance the educational experience and what topics are
historical remnants.

• Recognize that the above problems can’t be solved by
simply adding more to the curriculum when new ideas,
skills, and topics arise.

• Critically examine what constitutes foundational knowledge
about computing and how we can best teach it to students
who intend to pursue computing as a major.

• Determine what parts of that foundational knowledge
are necessary “for all”, recognizing that computing is a
fundamental literacy.

56

WWWWWWeeee nnnneeeeeeeddd tooo mmaakke sure thaatt bbotthh tthhoossseee wiitttthhhhiiiin the

References and Further Readings

ACM/IEEE-CS. (2013). Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree
Programs in Computer Science. ACM, New York.

ACM/IEEE-CS. (2021). Computing Curricula 2020: Paradigms for Global Computing Education. ACM, New York.

Atchison, W. F., Conte, S. D., Hamblen, J. W., Hull, T. E., Keenan, T. A., Kehl, W. B., McCluskey, E. J., Navarro, S.
O., Rheinboldt, W. C., Schweppe, E. J., Viavant, W., & Young, D. M. (1981). ACM Recommended Curricula for
Computer Science and Information Processing Programs in Colleges and Universities, 1968-1981 [Technical
Report]. Association for Computing Machinery.

Benjamin, R. (2019). Race after technology: Abolitionist tools for the new jim code. Social forces.

Braveman, P., & Gruskin, S. (2003). Defining equity in health. Journal of Epidemiology & Community Health,
57(4), 254-258.

Brittain, J.E. (1978). The contemplative EE: Engineering history and education. Proceedings of the IEEE, 66(8),
825–829.

CC2020 Task Force. (2020). Computing Curricula 2020: Paradigms for Global Computing Education.
Association for Computing Machinery.

Clements, D. (1999). The Future of Educational Computing Research:The Case of Computer Programming.
Information Technology in Child Education. 1. https://www.researchgate.net/
publication/255632182_The_Future_of_Educational_Computing_ResearchThe_Case_of_Computer_Programm

ing

Computer Science Curricula 2013 | ACM Other Books. (n.d.). Retrieved November 15, 2023, from https://
dl.acm.org/doi/book/10.1145/2534860

Connor, K.A., & Walker, M.F. (1984). The Advent of Electrical Engineering at Rensselaer: 1900-1940. IEEE
Transactions on Education, 27(4), 226–231.

Conte, S. D., Hamblen, J. W., Kehl, W. B., Navarro, S. O., Rheinboldt, W. C., Young, D. M., & Atchinson, W. F.
(1965). An undergraduate program in computer science - 2014; preliminary recommendations.
Communications of the ACM, 8(9), 543–552. https://doi.org/10.1145/365559.366069

Cooper, S., Grover, S., Guzdial, M., and Simon, B. (2014). A future for computing education research. Commun.
ACM 57, 11 (November 2014), 34–36. https://doi.org/10.1145/2668899

Denning, P.J. (1981). ACM president’s letter: eating our seed corn. Communications of the ACM, 24(6), 341–
343.

Denning, P.J., Feigenbaum, E., Gilmore, P., Hearn, A., Ritchie, R.W., and Traub, J. (1981). A discipline in crisis.
Communications of the ACM, 24(6), 370–374.

diSessa, A.A. (2018) Computational Literacy and “The Big Picture” Concerning Computers in Mathematics
Education, Mathematical Thinking and Learning, 20:1, 3-31.

Dym, B., Pasupuleti, N., Rockwood, C., and Fiesler, C. (2021). "You don′t do your hobby as a job": Stereotypes of
Computational Labor and their Implications for CS Education. In Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education. ACM.

Fiesler, C. (2021). What “counts” as computer science? Blog Mar 18, 2021, accessed Dec 2023.
https://cfiesler.medium.com/what-counts-as-computer-science-31f9dd955ad9

58

https://cerfutureworkshop.wpcomstaging.com/summary-of-outcomes/
https://www.researchgate.net/publication/255632182_The_Future_of_Educational_Computing_ResearchThe_Case_of_Computer_Programm
https://dl.acm.org/doi/book/10.1145/2534860
https://dl.acm.org/doi/book/10.1145/2534860
https://doi.org/10.1145/365559.366069
https://doi.org/10.1145/2668899
https://cfiesler.medium.com/what-counts-as-computer-science-31f9dd955ad9

Fiesler, C., Friske, M., Garrett, N., Muzny, F., Smith, J.J., and Zietz, J. (2021). “Integrating Ethics into
Introductory Programming Classes.” In Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education (SIGCSE’21). New York, NY, USA: ACM. 2021.

Frase, K.G., Latanision, R.M., and Pearson, G. (2017). Engineering Technology Education in the
United States. National Academies Press.

Goel, V. (2014). Facebook Tinkers With Users’ Emotions in News Feed Experiment, Stirring Outcry.
Retrieved from https://www.nytimes.com/2014/06/30/technology/facebook-tinkers-with-users-
emotions-in-news-feed-experiment-stirring-outcry.html

Goldweber M., Little J., Cross G., Davoli R., Riedesel C., von Konsky B., and Walker H. (2010).
Enhancing the Social Issues Components in our Computing Curriculum. Proceedings of the 2010
ITiCSE working group reports. (117-133). https://dl.acm.org/doi/10.1145/1971681.1988996

Granger, M. J., Little, J. C., Adams, E. S., Björkman, C., Gotterbarn, D., Juettner, D. D., ... and Young, F.
H. (1997). Using information technology to integrate social and ethical issues into the computer
science and information systems curriculum (report of the ITiCSE'97 working group on social and
ethical issue in computing curricula). In The supplemental proceedings of the conference on
Integrating technology into computer science education: working group reports and supplemental
proceedings. New York, NY, USA: ACM. 1997, pgs. 38-50.

Grayson, L.P. (1978). Engineering education throughout the world: A synoptic view. Proceedings of the
IEEE, 66(8), 940–956.

Grayson, L.P. (1980). A Brief History of Engineering Education in the United States. IEEE Transactions
on Aerospace and Electronic Systems, AES-16(3), 373–392.

Hammonds, E., Taylor, V., and Hutton, R. (2021). Transforming Trajectories for Women of Color in
Tech. National Academies Press.

Jørgensen, U. (2007). Historical Accounts Of Engineering Education. In: Rethinking Engineering
Education. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-38290-6_10

K–12 Computer Science Framework. (2016). http://www.k12cs.org

Kafai, Y. B., & Proctor, C. (2021). A Revaluation of Computational Thinking in K–12 Education: Moving
Toward Computational Literacies. Educational Researcher, 0013189X2110579.

Kaspar, J., Harrendorf, S., Butz, F., Höffler, K., Sommerer, L., Christoph, S. (2023). Artificial
Intelligence and Sentencing from a Human Rights Perspective. In: Završnik, A., Simončič, K. (eds)
Artificial Intelligence, Social Harms and Human Rights. Critical Criminological Perspectives. Palgrave
Macmillan, Cham. https://doi.org/10.1007/978-3-031-19149-7_1

Ko, A. J., Oleson, A., Ryan, N., Register, Y., Xie, B., Tari, M., David- son, M., Druga, S., & Loksa, D.
(2020). It is time for more critical CS education. Communications of the ACM,

Lucia, O., Martins, J., Ibrahim, Y., Umetani, K., Gomes, L., Hiraki, E., Zeroug, H., and Manic< M.
(2021). Industrial Electronics Education: Past, Present, and Future Perspectives. IEEE Industrial
Electronics Magazine, 15(1), 140–154.

Margolis, J., & Fisher, A. (2003). Unlocking the clubhouse: Women in computing. The MIT Press.

Margolis, J. (2008). Stuck in the shallow end: Education, race, and computing. The MIT Press.

59

https://www.nytimes.com/2014/06/30/technology/facebook-tinkers-with-users-emotions-in-news-feed-experiment-stirring-outcry.html
https://www.nytimes.com/2014/06/30/technology/facebook-tinkers-with-users-emotions-in-news-feed-experiment-stirring-outcry.html
https://www.nytimes.com/2014/06/30/technology/facebook-tinkers-with-users-emotions-in-news-feed-experiment-stirring-outcry.html
https://dl.acm.org/doi/10.1145/1971681.1988996
https://doi.org/10.1007/978-0-387-38290-6_10
http://www.k12cs.org
https://doi.org/10.1007/978-3-031-19149-7_1

Martin, C.D. (1997). The case for integrating ethical and social impact into the computer science curriculum. In
The supplemental proceedings of the conference on Integrating technology into computer science education:
working group reports and supplemental proceedings (ITiCSE-WGR '97). Association for Computing Machinery,
New York, NY, USA, 114–120. https://doi.org/10.1145/266057.266131

McNamara, A., Smith, J., & Murphy-Hill, E. (2018). Does ACM’s code of ethics change ethical decision making in
software development? In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018). Association for
Computing Machinery, New York, NY, USA, 729–733. https://doi.org/10.1145/3236024.3264833

Miaskiewicz, T., & Kozar, K. A. (2011). Personas and user-centered design: How can personas benefit product
design processes? Design Studies, 32(5), 417–430.

Mowery, D.C., and Langlois, R.N. (1996). Spinning off and spinning on(?): the federal government role in the
development of the US computer software industry. Research Policy, 25(6), 947-966.

Nathan, M. J., & Petrosino, A. (2003). Expert Blind Spot Among Preservice Teachers. American Educational
Research Journal, 40(4), 905–928.

National Science Foundation. (2018). National Science Foundation Strategic Plan for 2018-2022: Building the
Future. Retrieved December 2023 from https://www.nsf.gov/pubs/2018/nsf18045/nsf18045.pdf

Núñez, A., Mayhew, M. J., Shaheen, M., & Dahl, L. S. (2021). Let’s teach computer science majors to be good
citizens. The whole world depends on it. Edsurge.

O’Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy.
Broadway Books.

Postman, N. (1998). Five Things We Need to Know About Technological Change. Retrieved December 2023
from https://web.cs.ucdavis.edu/~rogaway/classes/188/materials/postman.pdf

Seely, B. E. “SHOT, the History of Technology, and Engineering Education.” Technology and Culture, vol. 36, no.
4, 1995, pp. 739–72. JSTOR, https://doi.org/10.2307/3106914.

Singer, N., and Huang, K. (2022). Computer Science Students Face a Shrinking Big Tech Job Market. Retrieved
December 2023 from https://www.nytimes.com/2022/12/06/technology/computer-students-tech-jobs-
layoffs.html

Singer and Natalie R. Nielsen and Heidi A. Schweingruber (2012). Discipline-Based Education Research.
National Academies Press.

Steier, R. (1983). From Washington: Replanting the “Seed Corn”. Communications of the ACM, 26(4), 245.

Tissenbaum, M., Weintrop, D., Holbert, N., & Clegg, T. (2021). The Case for Alternative Endpoints in Computing
Education. British Journal of Educational Technology, 52(3), 1164–1177.

U.S. Department of Labor. (2022). Occupational Outlook Handbook: Computer and Information Technology
Occupations. Retrieved December 2023 from https://www.bls.gov/ooh/computer-and-information-technology/
home.htm

Watters, A. (2021). Teaching machines: The history of personalized learning. MIT Press.

Yadav, A., & Heath, M. K. (2022). Breaking the Code: Confronting Racism in Computer Science through
Community, Criticality, and Citizenship. TechTrends, 66(3), 450–458.

Zweben, S. and Bizot, B. 2020 Taulbee Survey: Bachelor's and Doctoral Degree Production Growth Continues
but New Student Enrollment Shows Declines. Computing Research News, May 2021: 2–68

60

https://www.nsf.gov/pubs/2018/nsf18045/nsf18045.pdf
https://doi.org/10.1145/266057.266131
https://doi.org/10.1145/3236024.3264833
https://web.cs.ucdavis.edu/~rogaway/classes/188/materials/postman.pdf
https://doi.org/10.2307/3106914
https://www.nytimes.com/2022/12/06/technology/computer-students-tech-jobs-layoffs.html
https://www.nytimes.com/2022/12/06/technology/computer-students-tech-jobs-layoffs.html
https://www.nytimes.com/2022/12/06/technology/computer-students-tech-jobs-layoffs.html
https://www.bls.gov/ooh/computer-and-information-technology/

	Binder2.pdf
	FinalDraft_Jan10.pdf
	TableofContents.pdf
	Upto57Clean.pdf
	Upto52Clean.pdf
	Upto52MostlyClean.pdf
	Upto30Clean.pdf
	UptoPage25Clean.pdf
	UptoPage21Clean.pdf
	UptoPage17Clean.pdf
	18to21.pdf

	22to25.pdf

	26.pdf
	27to30.pdf

	31.pdf
	33.pdf
	41to523.pdf

	36to40.pdf
	34.pdf
	32.pdf
	35.pdf

	53to56.pdf
	57.pdf

	References.pdf
	References Page 2.pdf
	ReferencesPage3.pdf

	RightBarPageBlank.pdf

